Differential role of actin in lung endothelial and epithelial barrier properties in perfused rabbit lungs

ABSTRACT: Lung fluid balance is critically dependent on capillary endothelial and alveolar epithelial barrier properties, and cytoskeletal components have been implicated in these barrier functions. In an earlier study, we perfused Clostridium botulinum C2 toxin, which effects selective loss of non-muscle F-actin, through isolated rabbit lungs; a severalfold increase in the capillary filtration coefficient (Kfc) was noted, together with attenuations and disruptions of endothelial cells upon electron microscopic examination. In this model we have investigated the influence of the C2 toxin on alveolar epithelial barrier properties. Epithelial permeability was assessed by continuous monitoring of the transepithelial passage of technetium-labelled diethylenetriamine penta-acetic acid (99mTc-DTPA), offered to the alveolar surface by aerosol technique.

Intravascular administration of hydrogen peroxide, used as control agent, was shown to provoke a four- to fivefold increase in the clearance rate of 99mTc-DTPA under conditions of severe fluid leakage into the lung interstitial and alveolar space. Intravascular administration of C2 toxin caused a dose- and time-dependent increase in Kfc values (8–15 fold), but the Tc-DTPA clearance rate was entirely unaffected. Moreover, transbronchial application of C2 toxin again reproduced the manifold increase in Kfc data (about six fold), but the rate of transepithelial passage of the hydrophilic Tc-DTPA complex remained unchanged.

We conclude that the barrier properties of the lung microvascular endothelial and epithelial layer are differentially regulated. It is suggested that the actin microfilament system plays a decisive role in the structural and functional integrity of the endothelial but not the epithelial barrier.

*Dept of Internal Medicine and **Institute of Anatomy and Cytobiology, Justus-Liebig University Giessen, Giessen, Germany.

Correspondence: W. Seeger
Justus Liebig University Giessen
Dept of Internal Medicine
Klinikstrasse 36
D-35385 Giessen
Germany.

Keywords: Botulinum C2 toxin endothelial permeability epithelial permeability isolated rabbit lung

Received: December 28 1994
Accepted after revision August 15 1995

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 249).

Lung oedema formation may be caused by two basically different mechanisms: increased fluid filtration under conditions of elevated capillary pressure (hydrostatic oedema); and transudation of fluid due to inflammatory or toxic deterioration of capillary endothelial and/or alveolar epithelial barrier function (high permeability pulmonary oedema) [1, 2]. A combination of both mechanisms may also exist. Recent studies into the ultrastructural damage of the gas exchange area in rabbit lungs after exposure to high capillary pressures revealed disruptions of both endothelial and epithelial layers in variable association with additional rupture of the basement membrane [3–8]. These barrier lesions have been attributed to stress failure. The mechanisms maintaining cellular integrity and anchorage of cell-cell and cell-matrix contacts are overridden by the mechanical forces. Major importance for the maintenance of the endothelial and epithelial barrier function is attributed to the cytoskeleton, in particular actin filament stress fibres [9–11].

Interestingly, alterations reminiscent of stress failure lesions were recently noted in response to intravascular challenge of rabbit lungs with Clostridium botulinum C2 toxin at low capillary pressures [12]. C2 is a binary toxin, consisting of the two components C2I and C2II [13]. C2I (Mr 100,000) promotes the translocation of component I into eukaryotic cells. C2II (Mr 50,000) selectively adenosine diphosphate (ADP)-ribosylates non-muscle G-actin at arginine 177 [13, 14]. The covalent G-actin modification leads to a drastic inhibition of G-actin polymerization [13], and inhibits nucleation of polymerization by the gelsolin-actin complex [15]. In addition, G-actin is converted into a capping protein, which binds to the barbed end of actin filaments and, thereby, inhibits the polymerization at this site, whereas the depolymerization at the pointed end is not affected. The net effect is the progressive and virtually complete decay of F-actin [14]. In C2I toxin-treated perfused rabbit lungs, a severalfold increase in the capillary filtration coefficient (Kfc) was noted, accompanied by extensive oedema formation, and electron microscopic examination of these lungs revealed attenuations and disruptions of endothelial cells [12]. C2 toxin effects were partly antagonized by the F-actin stabilizing agent phallacidin. These findings
strongly support an important role of the actin microfilament system for the structural and functional integrity of the lung capillary endothelial layer at physiological vascular pressures.

The present study was undertaken to probe the role of the actin-based filamentous network for the alveolar epithelial barrier function in intact rabbit lungs. Continuous monitoring of the transepithelial passage of aerosolized 99mTc-technetium-labelled diethyleneetriamine penta-acetic acid (99mTc-DTPA) MW 492 Da was used for assessment of these barrier properties, and botulinum C₂ toxin - offered to both the endothelial and epithelial surface - was again employed for selective perturbation of actin. Both methods of toxin delivery again provoked capillary endothelial leakage, whereas the transepithelial tracer passage remained entirely unaffected. These results suggest a differential role of the actin microfilament system in capillary endothelial and alveolar epithelial barrier properties in intact lungs.

Methods

Reagents

Hydroxyethylamyllopectin (MW 200,000) was received from Fresenius AG (Oberursel, Germany), CaNa₃-DTPA/ SnCl₂-2 H₂O from Amersham Buchler (Braunschweig, Germany), and 99mTcO₄⁻ was graciously supplied by G.L. Fängewisch, Dept of Nuclear Medicine, Giessen. All other chemicals were obtained from Merck (Darmstadt, Germany).

Preparation of C₂ toxin

Preparation of the components I and II of the toxin was performed essentially as described previously [16]. Aliquots of one batch of each toxin component, dissolved in saline, were stored at -20°C and used throughout the study. Mixing of the components was performed by J. Gebhart, GSF, Frankfurt, Germany). The mass administration. Chromatography was performed in duplicate on strips 1.0×10 cm of Whatman No. 3 paper (tidal volume 30 mL; frequency 30 ventilations-min⁻¹; end-expiratory pressure 1 cmH₂O), the pH of the perfusion fluid ranged 7.35–7.45. After extensive rinsing of the vascular bed, the lungs were perfused with a pulsatile flow of 150 mL-min⁻¹. Perfusion fluid was recirculated but the alternate use of two separate perfusion circuits, each containing 200 mL, allowed exchange of perfusion fluid. Perfusion pressure, ventilation pressure and the weight of the isolated organ were registered continuously. The left atrial pressure was set to 2 mmHg under baseline conditions (0 referenced at the hilum) to guarantee zone III conditions at end-expiration throughout the lung. The capillary filtration coefficient (Kfc, given in cm⁻¹s⁻¹mmHg⁻¹g⁻¹ wet lung weight ×10⁻⁴) and the total vascular compliance were determined gravimetrically from the slope induced by a 7.5 mmHg step elevation of the venous pressure for 8 min. The application of this method to the present model and the use of zero time extrapolation of the slope of weight gain for the calculation of Kfc have been described previously [17].

In lungs already displaying toxin-induced weight gain before onset of the hydrostatic challenge, the pressure step-induced rate of weight gain was corrected for this baseline rate of weight gain. In addition, the hydrostatic challenge-induced net increase in lung weight (AW, determined as the difference between prechallenge and 2 min post-challenge weight) was assessed. Lungs selected for the study were those that: 1) had a homogenous white appearance without signs of haemostasis or oedema formation; 2) had pulmonary artery and ventilation pressure in the normal range; and 3) were isogravimetric during a steady-state period of 40 min.

Measurement of clearance rate of inhaled aerosolized 99mTc-DTPA

The clearance rate of aerosolized 99mTc-DTPA from the lungs into the perfusion fluid was used as an index of pulmonary epithelial permeability [18–20].

Aerosol preparation and evaluation. CaNa₃-DTPA, 1.2 mg, and SnCl₂-2H₂O, 0.016 mg, were added to 0.5 mL of sterile saline in a reaction vial, followed by 270 µCi of 99mTcO₄⁻ in 0.5 mL of saline, incubated for 20 min. This solution was placed in a Savac nebulizer, driven with the same gas mixture as used for lung ventilation, at a pressure of 12 Psi. To minimize dissociation of the 99mTc-DTPA complex, the radiopharmaceutical was prepared within 20 min of use. Repetitive analysis of the degree of binding between 99mTc and DTPA was performed by paper chromatography in samples collected from the residual fluid in the nebulizer and collected from the lung perfusion circuit up to 120 min after aerosol administration. Chromatography was performed in duplicate on strips 1.0×10 cm of Whatman No. 3 paper as described previously [21]; the binding surpassed 99% in all cases. Size of the aerosol particles was determined by a differential mobility analyser (DMA), connected to a condensation nucleus counter (CNC) (kindly performed by J. Gebhart, GSF, Frankfurt, Germany). The mass median aerodynamic diameter (MMAD) of the particles...
was 1.1 µM, with a geometric standard deviation (GSD) of 2.1. The aerosol was delivered to the inspiration loop of the ventilator by use of a bag-in-box system; approximately 4–5 µCi 99mTc were deposited in the lung bronchoalveolar compartment within 6–10 min by use of this technique.

Data collection and calculation of clearance rate. Two 2 inch sodium-iodide detectors, connected with a Ramona G gamma counter (Raytest, Straubenhardt, Germany), were levelled to the costal side of the left lung at a distance of 3 cm to the tracheal bifurcation and to the perfusion circuit reservoir [22]. Lung and perfusate reservoir were shielded by lead from each other and from background activity. This equipment summed the number of counts every second; averaging was performed every 30 s. Absolute counts were corrected for the radioactive half-life of 99mTc (360 min) and for the difference in recoveries of tracer between lung and perfusate sampling position. The latter were assessed by separating the lung and the perfusion circuit and independently loading both with known quantities of tracer. Correction for perfusate-associated radioactivity contained in the lung vascular volume (~3 ml) was not undertaken, as this never surpassed 0.5% of total lung radioactivity (due to the large perfusate reservoir into which the tracer was diluted after transepithelial passage). Kinetics of lung and perfusate radioactivity were displayed, and the 99mTc-DTPA clearance rate was calculated as fractional decrease of lung-associated radioactivity per min (-%/min⁻¹).

Experimental design

After termination of the initial steady-state period, the recirculating Krebs-Henseleit hydroxyethylamylopectin buffer was exchanged with fresh buffer medium, pre-loading of the lungs with 99mTc-DTPA was performed and baseline clearance rate was measured for a 15 min period (range -0.4 to -1.6% in all experiments). Next, time was set to zero and C2 toxin, H2O2 or sham challenge was undertaken. Toxin doses were chosen according to dosage used in the preceding study with intravascular application of C2 toxin in isolated rabbit lungs [12]. Whilst radioactivity was monitored continuously, hydrostatic challenges for assessment of Kfc were performed 20, 50 and 80 min after application of stimulus. Perfusion was terminated 2 min after finishing the third venous pressure elevation, or when the toxin-induced increase in lung weight gain (∆W) surpassed 30 g. Six experimental groups were studied, each with five isolated lungs: Control. Sham application of 500 µl saline, either injected into the pulmonary artery (n=2) or applied intratracheally (n=3).

C2 0.06/0.12 µg infus. C2I (0.06 µg) and C2II (0.12 µg) were premixed in 500 µL saline and infused into the pulmonary artery within 2 min.

C2 1/2 µg infus. C2I (1 µg) and C2II (2 µg) were premixed in 500 µL saline and infused into the pulmonary artery within 2 min.

Fig. 1. – Time-course of lung weight gain (∆W): a) in control lungs; and b–d) in lungs exposed to different C2 toxin doses (b) C2 1/2 µg intravascular infusion; c) C2 2/4 µg intravascular infusion; d) C2 2/4 µg via trachea). The 10 min hydrostatic challenges (20, 50 and 80 min) are indicated by columns. Mean values±SEM of five experiments each are depicted (SEM bars are missing when falling into symbol). Except for the low-dose toxin group (0.06/0.12 µg; not depicted as not differing from the control group), all groups with botulinum C2 toxin application were significantly different from the control group.
C$_2$ 2/4 µg trach. C$_{21}$ (2 µg) and C$_{2II}$ (4 µg) were pre-mixed in 500 µL saline and slowly injected into the trachea via a small catheter whilst rotating the lung.

H_2O_2. This agent was admixed to the recirculating buffer fluid at a final concentration of 250 µM. In order to avoid a large increase in pulmonary artery pressure, the application of H_2O_2 was performed in the presence of 500 µM acetylsalicylic acid.

Statistics

All values are given as mean±SEM. For assessment of statistical significance, two-way analysis of variance was performed; significance was assumed when the p-value was less than 0.05.

Results

Pulmonary artery pressure

In all lungs, the pulmonary artery pressure ranged 5–8 mmHg during the initial baseline period. In all groups vascular compliance did not change. Neither intravascular nor intratracheal challenge with botulinum C$_2$ toxin provoked any change in vascular perfusion pressure throughout the experiments. Due to the presence of acetylsalicylic acid, the H_2O_2-provoked increase in pulmonary artery pressure (which is known to be largely thromboxane mediated in rabbit lungs [23]) was restricted to <3 mmHg.

Endothelial permeability and lung weight gain

In control lungs and in lungs subjected to the low C$_2$ toxin dose of 0.06/0.12 µg, no spontaneous weight gain occurred (fig. 1), and the Kfc values never surpassed 2.5 cm3s$^{-1}$mmHg$^{-1}$g wet lung weight $\times 10^{-4}$ (fig. 2). The hydrostatic challenge-induced weight gain was largely reversible after termination of the manoeuvres of venous pressure elevation (fig. 1). In contrast, application of the combined components of botulinum C$_2$ toxin at higher dosage (1/2 and 2/4 µg infused into the circulation) caused a time- and dose-dependent, pronounced increase in Kfc values (fig. 2). For the second challenge, lungs treated with 2/4 µg C$_2$ toxin differed significantly (p<0.005) from control lungs. For the third challenge all groups with C$_2$ toxin, except for the low-dose toxin group (0.06/0.12), dif-

![Fig. 2. - Time- and dose-dependent increase in the capillary filtration coefficient (Kfc) in response to botulinum C$_2$ toxin stimulation. Hydrostatic challenges were performed 20 min (No. 1), 50 min (No. 2) and 80 min (No. 3) after toxin application. Mean values±SEM of five experiments each are depicted (SEM bars are missing when falling into symbol). After 80 min (challenge No. 3) all groups with botulinum C$_2$ toxin application differed significantly from the control group, except for the low-dose toxin group (0.06/0.12 µg; *: p<0.05. ———: C$_2$ 2/4 µg infus.; ———: C$_2$ 1/2 µg infus.; ———: C$_2$ 2/4 µg trach.; ———: C$_2$ 0.06/0.12 µg infus.; ———: control.)](image1)

![Fig. 3. - Time-course of lung 99mtechnetium-labelled diethylenetriamine penta-acetic acid (99mTc-DTPA) clearance: a) in control lungs; and b) in lungs exposed to H_2O_2 (250 µm). a) After termination of lung 99mTc-DTPA deposition, radioactivity tracing was started over the lung (set 100%) and over the perfusate reservoir (starting point 0%) (mean values of two separate experiments shown). Counts were corrected for the different recoveries of the two tracing positions and for the decay of label. Clearance rates (%·min$^{-1}$) were calculated from the decline in lung radioactivity every 30 s. The constancy of clearance rates in the two control lungs is evident. *: clearance rates; ■: lung; +: perfusate. b) Marked increase in the 99mTc-DTPA clearance rate in lungs exposed to H_2O_2 (250 µm) challenge (n=5 experiments; mean±SEM bars given for each time-point).](image2)
In the present study, botulinum C2 toxin was used as a tool for selective perturbation of non-muscle F-actin. The effect of botulinum C2 toxin on endothelial cell monolayers and human neutrophils is characterized by a time- and dose-dependent increase of G-actin and a decrease of F-actin [24, 25]. The kinetics of F-actin loss was compatible with the increase in hydraulic conductivity in the endothelial cell monolayer study [24]. As reported previously, intravascular administration of this agent in the isolated lung model provoked a dose-dependent, dramatic increase in the capillary filtration coefficient, concomitant with severe lung oedema formation, both under baseline conditions and, in particular, in response to hydrostatic challenges [12].

Preloading of lung cells in the isolated perfused lung model with phallacidin, which in opposition to C2 toxin decreases F-actin depolymerization, significantly reduced the C2 toxin-induced increase in vascular permeability after intravascular application of C2 toxin [12]. As the vascular pressures were entirely unaffected, being comparable in control lungs and C2-treated lungs, and vascular compliance did not change (data not given in detail), there was no evidence for any substantial in-
crease in endothelial surface area, and the dramatic rise in K_f and lung weight must be fully ascribed to an increase in the hydraulic conductivity of the lung endothelial barrier. Moreover, the extent of K_f rise and fluid accumulation strongly suggests that the lung microvasculature represents the predominant site of toxin attack, as it is by far the leading site of lung fluid filtration [26, 27], and the presently observed severalfold increase in hydraulic conductivity is not imaginable without major involvement of this capillary filtration site. This view is fully supported by the electron microscopic examination of C$_2$ toxin-treated lungs, showing attenuation and disruptions of endothelial cells throughout the capillary bed [12].

In these preceding studies, no gross morphological deterioration of alveolar epithelial cells type I was noted [12], and the current study directly focused on the permeability characteristics of this barrier. We employed continuous monitoring of the transepithelial passage of 99mTc-DTPA, offered to the alveolar surface by aerosol technique, as the clearance of this hydrophilic complex is a sensitive marker of alveolar epithelial barrier function in intact lungs [18–20]. The rate-limiting step of its escape from the alveolar surface into the perfusate is the diffusion via interepithelial clefts, whereas the subsequent transendothelial passage is much less restricted. The constancy of the continuously calculated clearance rate of Tc-DTPA over the entire experimental period was demonstrated in control lungs.

To probe the reliability of this technique to also assess increase in epithelial permeability under conditions of severe fluid leakage into the interstitial and alveolar spaces, we employed H$_2$O$_2$ challenge as a "positive" control group. This agent is a potent inducer of a variety of second messenger events in alveolar epithelial cells, including elevation of intracellular calcium [28]; and the latter signal may be related to contractile events with intercellular gap formation, as described for endothelial monolayers [29]. In the current perfused lung model, H$_2$O$_2$ elicited a rapid, manifold increase in the Tc-DTPA clearance in the presence of lung fluid accumulation, the extent and kinetics of which were comparable to the oedema formation in the lungs with highest C$_2$ toxin challenge.

In contrast to H$_2$O$_2$ stimulation, intravascular administration of botulinum C$_2$ toxin did not provoke any rise in Tc-DTPA clearance up to the highest concentration used [12]. One possible explanation might be a compartmental effect: due to admixture to the vascular compartment, sufficiently high concentrations might reach the endothelial, but not the epithelial cells. This interpretation was, however, questioned by the previous findings of the capillary filtration site. This view is fully supported by the electron microscopic examination of C$_2$ toxin-treated lungs, showing attenuation and disruptions of endothelial cells throughout the capillary bed [12].

In conclusion, botulinum C$_2$ toxin possesses strong potency to provoke deterioration of capillary endothelial barrier function in intact lungs, independent of application via intravascular or transbronchial route. These findings indicate an important role for the actin microfilament system in the maintenance of structural and functional integrity of lung microvascular endothelial cells under physiological conditions. Moreover, alterations of the microfilament system could be the decisive step for the development of permeability changes due to a variety of inflammatory agents. In contrast, alveolar epithelial barrier properties are not affected by either route of C$_2$ toxin application. These data suggest differential regulation of the permeability characteristics in these closely adjacent barriers with respect to actin. Non-actin components of the cytoskeleton appear to predominate in the alveolar epithelial cell type.

Acknowledgements: The authors are grateful to R.L. Snipes, Department of Anatomy, Giessen for linguistically
reviewing the manuscript.

References

