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ABSTRACT: The alveolar macrophage (AM) is a critically important cell playing
a prominent role in lung inflammation via the production of oxygen radicals, enzymes,
arachidonic acid metabolites, and also a large panel of cytokines.  Among intersti-
tial lung disorders, silicosis and coal workers' pneumoconiosis (CWP) are the most
widespread fibrotic lung diseases.  Although their pathophysiology remains incom-
pletely understood, several lines of evidence suggest the participation of cytokines
produced by AMs at least in the initiation of the alveolitis. 

In vitro exposure of AMs (obtained from healthy subjects) to coal dust particles
triggered a significant release of tumour necrosis factor (TNF) and interleukin-6,
by comparison with titanium dioxide used as a biologically inert control dust.
Moreover, it appeared that coal mine dust was more aggressive than similar con-
centrations of pure silica, suggesting that cytokine secretion induced by coal mine
dust was not exclusively related to the presence of silica but resulted from a com-
plex interaction between the different components.

In silicosis and CWP, bronchoalveolar lavage showed a large influx of mononu-
clear phagocytes, with an increased spontaneous production of oxidants, fibronectin,
neutrophil chemotactic factor, and also of interleukin-6 and TNF-α.  This sponta-
neous cytokine release was associated with an increased cytokine messenger ribonu-
cleic acid (mRNA) expression in the lungs of coal miners.  Two profibrotic factors,
platelet-derived growth factor and insulin-like growth factor-1 (PDGF and IGF-1),
were the factors mainly secreted by AMs in patients with progressive massive fibro-
sis, whereas transforming-growth factor-β (TGF-β) production was predominant in
AMs obtained from patients with simple pneumoconiosis, suggesting a potential pro-
tective effect of TGF-β on the development of pulmonary fibrosis in coal workers'
pneumoconiosis.
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varies and is exaggerated in PMF.  In addition, CWP is
also frequently associated with the development of peri-
focal emphysematous lesions [12–14].

Current concepts in the pathogenesis of pneumoco-
niosis suggest that alveolar macrophages play a pivotal
role because of their ability to release mediators, such
as eicosanoid metabolites, destructive proteolytic en-
zymes, and inflammatory growth and differentiation fac-
tors [15–17].  More recently, resident cells (such as
endothelial cells, epithelial cells, fibroblasts) have been
shown to be effector cells themselves, secreting and
expressing various cytokines and molecules involved in
inflammatory and fibrotic processes [18–20].

In the chronic phase leading to pulmonary fibrosis in
the pneumoconiotic lung, it is clear that alveolar macro-
phage-derived cytokines may play an important part.  This
short review will concentrate on the role of cytokines in
the pathogenesis of silicosis and CWP with a special
emphasis on chronic inflammation and fibrosis.

Despite the progressive closing of coal mines in Europe,
coal workers' pneumoconiosis (CWP) is still a frequent
interstitial pulmonary disease.  CWP is usually divided
into two stages: simple pneumoconiosis (SP), in which
fibrotic lesions remain limited, with radiological opaci-
ties smaller than 1 cm, and progressive massive fibrosis
(PMF), characterized by the development of a perifocal
extensive fibrotic response of the lung and severe altera-
tions in pulmonary function [1–5].  Although pathophysio-
logical mechanisms remain incompletely understood,
there is acceptance of the concept implicating chronic
inflammatory processes in the development of the pul-
monary lesions.  Following inorganic coal dust exposure,
lung tissue responds by initiating three types of phe-
nomena: 1) an accumulation and activation of inflam-
matory cells in the lower respiratory tract [6–8]; 2) a
fibroblast proliferation [9]; and 3) an enhanced synthe-
sis of extracellular matrix components [10, 11].  The
intensity of these inflammatory and fibrotic processes
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Alveolar macrophage activation and cytokine
production after in vitro exposure to mineral

particles

After exposure to mineral dust particles in vitro, alve-
olar macrophages (AMs) are known to release oxygen
radicals and eicosanoids [21, 22].  Macrophages also
have the ability to secrete a large panel of cytokines and
fibroblast growth and differentiating factors when cul-
tured in the presence of mineral particles [23], such as
pure silica and coal mine dust, or inert particles, such as
titanium dioxide (TiO2).

Silica was shown to trigger the secretion of tumour
necrosis factor-alpha (TNF-α) [24], interleukin-1 (IL-1)
[25], or interleukin-6 (IL-6) [24] in a density- and time-
dependent manner, and at higher levels than those ob-
served after inert particle exposure [26].  DUBOIS et al.
[27] demonstrated that alveolar macrophages incubated
in the presence of silica produced both TNF and leuko-
triene  B4 (LTB4), and that endogenous lipoxygenase
metabolites could act to amplify TNF production.  Silica
exposure could also trigger the generation of prostaglan-
din E2 and D2 (PGE2 and PGD2) and thromboxane B2

(TxB2) [21].  Interestingly, PGE2 modulates TNF-indu-
ced macrophage activation.  Conversely, TNF stimulates
PGE2 release [28], which in turn suppresses TNF syn-
thesis in an autocrine manner [29].  Thus, LTB4 and
PGE2 may represent two important regulatory molec-
ules in the response to inorganic particle exposure.

However, the respective roles of silica and other com-
pounds present in coal mine dust have been debated.
GOSSET et al. [24] investigated the effects of in vitro
exposure to coal dust and to its silica content on TNF,
IL-1 and IL-6 production by normal human AMs.  Coal
dust induced the release of significant quantities of TNF
and IL-6 compared to TiO2, whereas IL-1β secretion
was not modified despite an enhanced expression of mes-
senger ribonucleic acid (mRNA) for this cytokine.  More-
over, after having investigated the respective roles of
silica and coal dust in the stimulation of alveolar macro-
phages, GOSSET et al. [24] suggested that cytokine secre-
tion can be induced by complex interactions of different
compounds of coal mine dust and is not exclusively re-
lated to the unique presence of silica.

In addition to proinflammatory cytokines, numerous
studies have also found factors susceptible to modify
fibroblast proliferation and collagen deposition in super-
natants of AMs exposed to mineral particles [30, 31].
Both compact and fibrous particles induce AMs to sec-
rete fibronectin [32–34], and large amounts of platelet-
derived growth factor (PDGF) [35–37], which is known
as a competence factor for fibroblast proliferation [38,
39].

Cytokines and experimental pneumoconiosis

Several recent studies have produced data supporting
the implication of alveolar macrophage-derived cytokines
in experimental models of pneumoconiosis.

The role of TNF has largely been documented in vari-
ous animal models.  Its central role has been clearly
demonstrated by PIGUET and co-workers [40].  After intra-
tracheal instillation of silica, a marked increase in the
level of lung TNF mRNA was observed, which persist-
ed beyond the 70th day.  More interestingly, the silica-
induced collagen production was significantly reduced
after treatment with anti-TNF antibodies.  In the same
model, PIGUET and co-workers [41], suggested the role
of IL-1 receptor antagonist (IL-1ra), since treatment of
silica-exposed mice with IL-1ra prevented the develop-
ment of fibrotic lesions.

DRISCOLL et al. [42] observed the production of two
chemotactic mediators, macrophage inflammatory pro-
tein-1 and -2 (MIP-1, MIP-2) by alveolar macrophages,
but also by fibroblasts or epithelial cells in rats exposed
to silica.

In addition, the expression of proliferative activities
for different cell types has been described.  An epithe-
lial type II cell growth factor (with biochemical charac-
teristics consistent with platelet-derived growth factor
(PDGF) or fibroblast growth-factor (FGF)-like mole-
cules) was observed in bronchoalveolar lavage fluid from
silica-exposed sheep [43].  In the same model, the expres-
sion of different proliferative activities for fibroblasts
was observed.  The implication of PDGF and its recep-
tor, of transforming growth factor-β (TGF-β), or of fibro-
nectin have been suggested in different animal models
of pneumoconiosis [34, 44, 45].  In addition to its mod-
ulatory role in the production of collagen [46], TGF-β
may act as a potent inhibitory mediator for the prolifer-
ation of type II cells, as shown in a murine model of sil-
icosis, and thus stabilize the lung structure and the
behaviour of the alveolar cell population [47].

Another potential participant in the cellular network
involved in pneumoconiosis is the lymphocyte.  In a
murine model of silicosis, RAKESH et al. [48] suggested
the implication of lymphocyte-derived interferon-γ (IFN-
γ) in the production of fibroblast growth factors by
macrophages obtained from silica-exposed animals, but
not from TiO2-exposed animals.  However, a recent study
seems to contradict these conclusions.  BRODY et al. [49]
demonstrated that recombinant IFN-γ, although stimu-
lating the production of PDGF by AMs, was a potent
inhibitor of fibroblast proliferation.  Moreover, IFN-γ
might also be able to inhibit the secretory functions of
fibroblasts [46].

Cytokines and alveolar macrophage activation in
silicosis and coal workers' pneumoconiosis

On the basis of results obtained in vitro and in animal
models, a list of mediators, potentially implicated in the
development of silicosis and coal workers' pneumoco-
niosis have been defined.  To determine the clinical rel-
evance of these mediators more precisely, studies have
been carried out in coal miners.  In some studies, AMs,
recovered by bronchoalveolar lavage (BAL) in mineral
dust-exposed patients and unexposed controls [50], were
tested for their spontaneous ability to secrete these fac-
tors.



TNF, IL-1 and IL-6

In silicosis, blood monocytes secrete exaggerated quan-
tities of TNF and IL-1 when compared to controls [51].
In contrast, AMs from patients with coal workers' pneu-
moconiosis released increased amounts of TNF and IL-
6, but not of IL-1 [24, 52, 53].  Moreover, when patients
were divided into two groups, simple pneumoconiosis
(SP) and progressive massive fibrosis (PMF), an increa-
sed secretion of TNF and IL-6 was observed in PMF
patients compared to SP [52].  In our laboratory, we re-
cently confirmed the presence of these proinflammatory
cytokines, TNF and IL-6, in the lung of pneumoconiot-
ic patients [54, 55, 56].  The anatomical relationship
between the expression of the specific mRNA and the
presence of particles was also confirmed, since a tight
correlation was found between the expression of mRNA
and the macrophage load of particles.  In addition to the
demonstration of AM activation in human lung exposed
to mineral dust, this study also showed evidence for an
endothelial cell activation, demonstrated by enhanced
expression of IL-6 mRNA in vascular sections.  The
increased expression of TNF and IL-6 mRNA by AMs
has been confirmed in other models of occupational
lung disease, such as chronic beryllium disease [56] or
asbestos [57].

These cytokines play a central role in inflammatory
and fibrotic processes, as suggested by several lines of
evidence.  TNF induces the recruitment of inflammato-
ry cells: lymphocytes, eosinophils and neutrophils, all of
which are involved in interstitial lung disease.  TNF is
able to induce the production of chemotactic factors
[18, 19, 58] or enhance the expression of adhesion mol-
ecules by resident cells (epithelial or endothelial cells)
or AMs [59, 60].  In vivo TNF infusion induces pul-
monary hyperpermeability and oedema, and elicits a ra-
pid neutropenia and lymphocytopenia [61–63].  In the
development of fibrosis following mineral dust expo-
sure, TNF is  known to stimulate fibroblast chemotaxis
[64] or growth in vitro [65], either directly or by induc-
tion of growth and differentiating factors potentially ac-
tive on fibroblast behaviour [66–68].  Although the role
of TNF in the matrix deposition remains incompletely
understood, there is evidence for an inhibition of colla-
gen synthesis by TNF [69, 70], whilst collagenase gene
expression is enhanced [28].

IL-6 has been implicated in the pathogenesis of pneu-
moconiotic disorders, following the observation of its
secretion by AMs exposed to coal mine dust [24].  IL-
6 is important in inflammatory processes, due to its abil-
ity to induce cellular adhesion molecules on monocytes,
which facilitates their infiltration into the lung  [71].  In
vivo, IL-6 seems to be implicated in autoimmune process-
es in association with TNF and IL-1 [72].  The demon-
stration of IL-6 secretion in the pneumoconiotic lung
might explain the frequent association with autoimmune
diseases, as well as the hypergammaglobulinaemia obser-
ved in coal workers' pneumoconiosis [73, 74].   IL-6
could also be implicated in the fibrotic response due to
its ability to induce collagen synthesis in vivo [75].
However, IL-6 has also been reported to exert some anti-

inflammatory properties.  IL-6 has been shown to have
a protective role in a mouse model of hypersensitivity
pneumonitis and of septic shock [76, 77].  It also sup-
pressed the acute neutrophil exudation caused by intra-
tracheal instillation of endotoxin in rats [78].  Earlier
studies showed that IL-6 inhibits lipopolysaccharide
(LPS)-induced TNF and IL-1 production in cultured
human monocytes, U937 cells, and in mice [79, 80].

PDGF, IGF-1 and TGF-β

In addition to TNF with its intrinsic capacity to pro-
mote fibroblast recruitment and replication [64, 65], other
macrophage-derived mediators have been proposed as
major mediators in the fibrotic process [9, 57, 81–83].
The development of fibrosis, namely of fibroblast pro-
liferation, needs the interaction of two signals: a com-
petence signal and a progression signal [84].  In this
respect, AMs exert both types of activities through their
capacities to release PDGF, a competence factor [38, 39],
and insulin-like growth factor-1 (TGF-1) a progression
factor [85].  In addition to these two well-defined growth-
factors, other studies have described the production by
AMs [24] of fibronectin, which is known to be a chemo-
tactic factor for fibroblasts and to prime or facilitate
fibroblast proliferation [32].  Another cytokine, TGF-β,
appears to play an important, although controversial,
role in lung fibrosis.  The role of this cytokine has not
been definitely established: it is thought to act as a medi-
ator regulating chemotaxis and proliferation of fibrob-
lasts [81].  In addition, TGF-β may suppress inflammatory
reactions [86].  KALTER and BRODY [87] demonstrated the
effective production of this cytokine by AMs exposed to
mineral dust in vitro.

In order to determine the capacities of AMs, exposed
in vivo to mineral dust, to modulate fibroblast growth,
the secretion of these three mediators (PDGF, IGF-1,
TGF-β) has recently been analysed in a population of
patients with coal workers' pneumoconiosis [8, 88].
PDGF, IGF-1 and TGF-β were detected at higher levels
in the epithelial lining fluid (ELF) of pneumoconiotic
patients.  The levels were different according to the deg-
ree of severity of the disease.  PDGF and IGF-1 con-
centrations were elevated in ELF of patients with PMF,
whilst TGF-β was found to predominate in ELF recov-
ered from patients with SP.  Although there has been
much debate about the cellular origin of these profibrotic
mediators, AMs represent one of the major sources [89],
at least in pneumoconiosis.  Indeed, the profile of the
levels of these mediators in ELF mirrored their levels in
AM supernatants (fig. 1).  The TGF-β present in BAL
fluid was almost entirely represented by the active form,
which suggests a possible in vivo cleavage by a prote-
olytic enzyme, such as plasmin or cathepsin D [90, 91].
Moreover in CWP, AM supernatants from patients with
PMF were able to promote proliferation of fibroblasts.
By contrast, AMs from patients with SP did not induce
fibroblast growth, but, on the contrary, inhibited 3H-
thymidine incorporation [88].  Also, the inhibition of 3H-
thymidine incorporation induced by AM supernatants
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from patients with SP or by purified TGF-β was abol-
ished by the addition of anti-TGF-β antibodies (fig. 2),
suggesting that TGF-β present in AM supernatants of

patients with CWP inhibits fibroblast proliferation [88].
TGF-β has recently been described as a potent inhibi-
tor of fibroblast growth [92, 94] due to modulation of
PDGF receptor expression [95, 96].  At low concentra-
tions, TGF-β was shown to induce the production of
PDGF, which promotes fibroblast growth; at higher
concentrations TGF-β down-regulated the PDGF recep-
tor expression, which blocks the autocrine PDGF loop,
or possibly directly inhibits fibroblast proliferation.
However, other studies have provided contradictory
data and are rather in favour of a profibrotic action of
TGF-β [82].  Thus, in animals treated with bleomycin,
TGF-β was increased and was thought to mediate bleomycin-
induced fibrosis [89, 97].  Another possible impact of
TGF-β is its ability to promote extracellular matrix pro-
tein synthesis [46, 81, 86].  TGF-β is known to induce
collagen synthesis at similar levels for both type I and
type III collagen [46].  As an increased ratio type I/type
III collagen is observed in the lung of PMF [100, 101],
this might suggest that TGF-β would not be the only
cytokine involved in the development of collagen accu-
mulation in pneumoconiotic lesions.

Additionally, TGF-β is known for its anti-inflamma-
tory properties [86].  TGF-β can act at different points
in the development of the inflammatory reaction.  GAMBLE

and co-workers [100–102] demonstrated that TGF-β
could inhibit endothelial cell adhesiveness to leucocytes
via an inhibition of the cellular adhesion molecule E-
selectin.  TGF-β deficient mice have been observed to

Fig. 1.  –  Profiles of secretion of: a) TNF; b) IL-6; c) IGF-1; d) PDGF;
and e) TGF-β by alveolar macrophages from pneumoconiotic patients
and control subjects.  Supernatants were obtained from a 3 h culture
of 3×106 macrophages·ml-1 and then treated by acidification to release
the active form of transforming growth factor-β (TGF-β).  TNF and
IL-6 were biologically assayed [54].  PDGF and IGF-1 levels were
determined by radio-immunoassays, TGF-β was assayed by ELISA.
Values are mean±SEM.  TNF: tumour necrosis factor; IL-6 interleukin-
6; IGF-1: insulin-like growth factor-1; PDGF: platelet-derived growth
factor; C: control n=14; SP: simple pneumoconiosis n=18; PMF: pro-
gressive massive fibrosis n=9; ELISA: enzyme-linked immunosorbant
assay.
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Fig. 2.  –  Proliferation of a human lung fibroblast cell line (MRC5)
induced by alveolar macrophage supernatants from patients with
coal workers' pneumoconiosis.  Supernatants were obtained from a 3
h culture of 3×106 macrophages·ml-1 and then treated by acidification
to release the active form of transforming growth factor-β (TGF-β).
Results are expressed as the percentage of change of 3H-thymidine
(3H-Thy) incorporation beween patients, and the mean incorporation
obtained with a pool of control subjects (1,253 cpm ±115).  Anti-
TGF-β antibodies were added to analyse the effect of TGF-β on the
fibroblast proliferation.  Antibodies were added at the same time as
alveolar macrophage supernatants to the fibroblast culture.  For abbre-
viations see legend to fig. 1.
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spontaneously develop a multifocal inflammatory dis-
ease [103–104].  DUBOIS et al. [105] showed that TGF-
β is a potent inhibitor of IL-1 receptor expression [105].
TGF-β also induced monocyte production of IL-1ra
[106, 107], a molecule that is known for its ability to
prevent the development of silica-induced pulmonary
fibrosis in mice [41].  Moreover, TSUNAWAKI et al. [108]
described the deactivation of alveolar macrophages by
TGF-β, leading to a possible decrease of TNF synthe-
sis.  Other recent observations support the hypothesis
that TGF-β could be a protective agent for fibroblast
proliferation and inflammatory reaction.  MORELAND et
al. [109] described a significantly higher concentration
of TGF-β in normal lung compared to fibrotic sclero-
derma lung.  YAMAUCHI et al. [110] discussed a possible
role for TGF-β in stabilizing the lung structure and be-
haviour of cell populations present in the normal lung.

Silicosis and coal workers' pneumoconiosis:
pathogenetic hypothesis

Activation of alveolar macrophages by coal mine dust
leads to the production of a large panel of inflamma-
tory and fibrotic mediators, possibly implicated in the
development of pneumoconiotic lesions (table 1).  Various
factors, including TNF, IL-6, MIP-1, MIP-2, LTB4, PGE2,
preferentially participate in the inflammatory reaction,
whereas other mediators, such as TNF, TGF-β, PDGF,
IGF-1, seem to be implicated in fibrotic processes.

Among these mediators, two cytokines, TNF and TGF-
β, appear to play a key role in the control of the inflam-
matory and fibrotic response of the lung to coal mine
dust.  The central role of TNF has been demonstrated
by several authors, supporting the concept that the over-
expression of TNF must be implicated in the develop-
ment of the extensive inflammatory and fibrotic reaction
observed in patients with progressive massive fibrosis
[40, 54, 55, 111].

Recent evidence, however, strengthens a new hypoth-
esis based on the dual biological properties of TGF-β
and on the opposite activities of TNF and TGF-β in the
development of the inflammatory and fibrotic reaction
[66].  TNF, which is produced in large amounts in the
lung of patients with progressive massive fibrosis, would
be responsible for the initiation and perpetuation of the
inflammatory reaction observed in the lung of patients
with progressive massive fibrosis.  In addition, TNF,
which can directly induce fibroblast proliferation, could
also trigger the production of mediators, such as PDGF
and IGF-1, which are more relevant for fibrosis.  By con-
trast, the anti-inflammatory capacities of TGF-β, which
is produced in large amounts in the lungs of patients with
simple pneumoconiosis, together with lower amounts of
TNF secretion (possibly due to TGF-β activities), could
explain the relatively limited development of the inflam-
matory process in these patients.  Moreover, by its abil-
ity to inhibit fibroblast growth, the secretion of TGF-β
in large amounts could explain the limitation of the fibro-
tic process observed in simple pneumoconiosis.

In conclusion, alveolar macrophages are present in
increased numbers in the lower respiratory tract of patients
with coal workers' pneumoconiosis and produce exag-
gerated amounts of a large panel of mediators and of
cytokines.  Whilst the load of inhaled particles is often
similar in mining workers, quantitative and qualitative
differences in the release of macrophage mediators might
represent an interesting explanation for differences in
outcome observed between similarly exposed subjects
[2, 4, 5, 8].  Through a different profile of cytokine pro-
duction, some coal miners might develop more severe
pulmonary lesions and pulmonary function impairment
despite similar exposure levels.  Therefore, evaluation of
the cytokine profile, and in particular of TGF-β, in par-
allel with TNF, could open new insights in the under-
standing of pneumoconiosis, and probably also of other
interstitial pulmonary disorders.
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Table 1.  –  Characteristics of alveolar macrophage-derived mediators involved in the pathogenesis of coal
workers' pneumoconiosis

Family Mediators Main functions

Cytokines TNF Initiation and regulation of inflammatory reaction
Regulation of fibrotic reaction (proliferation of fibroblast and secretion 
of extracellular matrix components)

IL-6 Chemotaxis and activation of lymphocytes
Growth factors PDGF Chemotaxis and activation of fibroblasts

IGF-1 Proliferation of fibroblasts
TGF-β Regulation of inflammatory reaction

Regulation of fibrotic reaction (modulation of fibroblast proliferation, 
expression of extracellular matrix components)

Fibronectin Adhesion and proliferation of fibroblasts
Chemokines IL-8 Chemotaxis of inflammatory cells

MIP-1α
MIP-1β
MIP-2

Arachidonic acid LTB4 Regulation of macrophage activation
derivatives Chemotaxis and activation of neutrophils

PGE2 Regulation of macrophage activation
Regulation of fibroblast proliferation

TNF: tumour necrosis factor; IL: interleukin; PDGF: platelet-derived growth factor; IGF: insulin-like growth factor; TGF:
transforming growth factor; MIP: macrophage inflammatory protein; LTB4: leukotriene B4; PGE2: prostaglandin E2
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