Effect of altitude on urinary leukotriene (LT) E₄ excretion and airway responsiveness to histamine in children with atopic asthma

ABSTRACT: Asthmatic subjects who are resident at altitude may experience a deterioration in lung function following a stay at sea level. To determine whether measurement of urinary leukotriene E₄ (LTE₄) reflects changes in asthma severity and airway responsiveness, 14 allergic asthmatic subjects resident at altitude (1560 m, Davos, Switzerland) were studied.

Subjects were randomly divided into two groups. Measurements of baseline forced expiratory volume in one second (FEV₁), the concentration of histamine producing a 20% decrease in FEV₁ (PC₂₀ FEV₁), serum total immunoglobulin E (IgE), eosinophil count, and urinary LTE₄ concentration were determined prior to and following a 2 week stay in The Netherlands (sea level) in eight subjects (4 males and 4 females, aged 14±0.5 yrs) (mean±SEM) and over a similar time period in six subjects (4 males and 2 females, aged 15±0.3 yrs) resident in Davos, Switzerland.

There was no significant difference in total IgE and eosinophil count, and no significant correlation between urinary LTE₄ and PC₂₀FEV₁ histamine, FEV₁, total IgE, and eosinophil count. In subjects returning to Davos from The Netherlands there was a significant increase in urinary LTE₄ from a baseline value of 16.9 pg·mg⁻¹ creatinine (GM, range 0.3–101.7 pg·mg⁻¹ creatinine) to 52.3 pg·mg⁻¹ creatinine (GM, range 8.8–301.6 pg·mg⁻¹ creatinine), a significant decrease in PC₂₀FEV₁ from 1.7 mg·ml⁻¹ (GM, range 0.3–16.4 mg·ml⁻¹) to 0.9 mg·ml⁻¹ (GM, range 0.1–>32 mg·ml⁻¹), and a significant fall in FEV₁ from 3.0±0.3 to 2.8±0.3 l (mean±SEM). There was no significant change in urinary LTE₄, FEV₁ or PC₂₀FEV₁ histamine during a similar period of time in subjects resident in Davos.

Thus, following a visit to sea level, children with atopic asthma who are usually resident at altitude exhibit a fall in FEV₁ and an increase in airway responsiveness to histamine, which is associated with a threefold increase in urinary LTE₄ excretion.

The cysteinyl leukotrienes (LTC₄, LTD₄ and LTE₄) are derived from arachidonic acid by the action of 5-lipoxygenase, which generates 5-hydroperoxyeicosatetraenoic acid and then leukotriene A₄ (LTA₄) [1–3]. LTA₄ is metabolized by the addition of glutathione to form LTC₄. LTC₄ may be converted by γ-glutamyltranspeptidase to generate LTD₄, which is converted by a dipeptidase to yield LTE₄ [4, 5]. In vitro the cysteinyl leukotrienes, LTC₄, LTD₄ and LTE₄, contract smooth muscle and enhance microvascular permeability [6–8]. In humans they are potent bronchoconstrictor agents when inhaled, and increase nonspecific bronchial hyperresponsive [9–12].

In man, there is rapid metabolism of LTC₄ to LTD₄ and then to LTE₄. LTE₄ may be further metabolized to oxidation products, which are excreted into bile and urine [13–16]. Combined reversed-phase high performance liquid chromatography (RP-HPLC) and radioimmunoassay (RIA) enables urinary LTE₄ to be measured [17], and the values have been used as an estimate of the production of cysteinyl leukotrienes in vivo. An increase in LTE₄ excretion occurs during an acute exacerbation of asthma, after antigen challenge in allergic asthmatic subjects [18–22], and following aspirin-induced asthma [23]. Antigen-induced bronchoconstriction is attenuated by prior treatment with leukotriene receptor antagonist [24, 25], supporting a role for the cysteinyl leukotrienes in acute allergic bronchoconstriction. The improvement in basal lung function after ingestion of an oral active LTD₄ receptor antagonist [26], and improvement of pulmonary lung function following long-term administration of leukotriene receptor antagonists [27], supports a
role for the cysteinyl leukotrienes in influencing basal bronchial tone.

Residence at altitude may be beneficial for subjects with atopic asthma, possibly due to the low concentration of house dust mite antigen [28, 29]. A deterioration in lung function may be observed on return to sea level, and this has been attributed to the increased exposure to allergen(s) and pollutants [28–31]. This study involved asthmatic children who were resident at The Netherlands Asthma Centre at altitude, since it had been observed that a return to The Netherlands may be accompanied by a deterioration in lung function.

To assess whether the deterioration in lung function in atopic asthmatic subjects residing at altitude after transient exposure to low altitude is accompanied by elevations in urinary LTE4, we have measured urinary LTE4 in eight asthmatic subjects normally resident at altitude who returned to sea level for a short visit and six asthmatic subjects resident at altitude over a similar period of time.

Methods

Subjects

Fourteen asthmatic subjects were studied (table 1). Asthma was defined by a history of episodic wheezing and a >20% reversibility of resting FEV1 following 400 µg inhaled albuterol. Atopic asthmatic subjects demonstrated a >3 mm wheal as compared to the diluent control in response to skin-prick tests to at least two common aeroallergens: grass pollen, tree pollen, cat dander, dog hair, Dermatophagoides pteronyssinus and D. farinae. All subjects were positive to house dust mite extracts. Subjects had not taken antihistamines in the month prior to the study, and no subject had experienced an upper respiratory tract infection in the preceding month, or during the study. The study protocol was approved by The Netherlands Asthma Centre Hospital Ethics Committee, and written informed consent was provided by the parent of each subject studied.

Study protocol

The Netherlands Asthma Centre in Davos is a clinic at moderate altitude (1,560 m). Asthmatic children may stay for up to 9 months and during this time return to The Netherlands for a short visit. In a prospective, randomized fashion, mild asthmatic subjects who had been resident in The Netherlands Asthma Centre, Davos, Switzerland (1,560 m) for at least one month, were selected to participate in the study following a full clinical history, examination and skin-prick tests to common inhaled aeroallergens. Subjects were randomly divided into two groups. During the same month, one group remained in Davos, whilst the second group returned to The Netherlands (360 m) for 14 days and then returned to Davos. All subjects attended the laboratory on two separate study days at the same time of day. In asthmatic subjects who remained in Davos, the study days were separated by 3 weeks, whereas in the group of asthmatic subjects who returned to The Netherlands, the study days were performed within 48 h of leaving for The Netherlands and within 48 h of returning to Davos. Medication was withheld for 8 h prior to each study day. On each study day, blood was withdrawn for total IgE measurement and eosinophil count. A urine sample was collected for LTE4 measurement, and then, within one hour, a histamine inhalation challenge was performed. Two subjects refused blood sampling on the second study day. One further subject selected in addition to the 14 participating in the study was excluded from the study, since medication was altered between the 2 study days when the subject returned to The Netherlands and maintenance therapy with steroids was changed. There was no change in medication between the two study days in the other asthmatic subjects studied.

Histamine inhalation challenge was performed using the Asthma Provocation System (APS) dosimeter (Jaeger, Wuzzburg, Germany), which delivers compressed air at a pressure of 1.6 bar (22.8 psi) for a duration of 0.6 s from the start of each breath. Under these conditions, the nebulizer delivers droplets with a mass median aerodynamic diameter of 1.9 µm. The output of the nebulizer is 9.3 µl·breath⁻¹. Measurements of FEV1 were made using a Jaeger Masterlab Spirometer. Three measurements of FEV1 were made at each time-point and the mean value was recorded. Provided baseline FEV1 was greater than 70% predicted for the patient, inhalation challenge proceeded. Each inhalation started at functional

Table 1. – Subject characteristics

<table>
<thead>
<tr>
<th>Subject No.</th>
<th>Age (yrs)</th>
<th>Sex</th>
<th>Atopy</th>
<th>FEV1 % pred</th>
<th>TX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthmatic subjects returning to The Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>M</td>
<td>+</td>
<td>93 A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>M</td>
<td>+</td>
<td>87 AB</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>F</td>
<td>+</td>
<td>92 ABD</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>F</td>
<td>+</td>
<td>115 AB</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>M</td>
<td>+</td>
<td>106 AB</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>F</td>
<td>+</td>
<td>109 AB</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>M</td>
<td>+</td>
<td>83 AC</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>F</td>
<td>+</td>
<td>100 ABC</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>14</td>
<td></td>
<td></td>
<td>98.1 ± 3.9</td>
<td></td>
</tr>
</tbody>
</table>

| Asthmatic subjects remaining in Davos |
9	16	M	+	115 AB	
10	14	F	+	121 AB	
11	16	M	+	92 AB	
12	14	M	+	91 AB	
13	15	M	+	107 AB	
14	15	F	+	53 AB	
Mean	15			96.5 ± 9.9	

M: male; F: female; FEV1: forced expiratory volume in one second; TX: treatment; A: inhaled albuterol; B: inhaled corticosteroid; C: cromoglycate; D: nedocromil. Mean is the arithmetic mean.
residual capacity and terminated at approximately 70% baseline vital capacity; a 5 s breathhold was maintained at the end of each inhalation. Subjects inhaled control solution (five breaths of normal saline). FEV\textsubscript{1} measurements were made at 1 and at 3 min after each inhalation. If the decrease in FEV\textsubscript{1} was <10% baseline value, subjects underwent inhalation challenge with histamine. Serial twofold increasing concentrations of histamine diphosphate (Leiden University Hospital, Leiden, The Netherlands) were inhaled from a concentration of 0.03 mg·ml-1 up to a maximum concentration of 32 mg·ml-1. Doubling concentrations of histamine were administered until the FEV\textsubscript{1} had fallen by >20% baseline value. The provocation concentration of histamine producing a 20% fall in FEV\textsubscript{1} (PC\textsubscript{20}FEV\textsubscript{1}) was determined from the log concentration histamine response curve by linear interpolation.

Measurement of urinary LTE\textsubscript{4}

Urine was collected prior to inhalation of histamine. The volume of urine was recorded and a 50 ml aliquot saved. The free radical scavenger, 4 hydroxy-2,2,6,6-tetramethyl-1-piperidino-oxy free radical (4-hydroxy TEMPO; Aldrich Chemical Co., Milwaukee, WI, USA) was added at a final concentration of 1 mM, and the samples adjusted to pH 9.0 with NaOH to stabilize endogenous leukotriene metabolites. The samples were coded and stored at -70°C until measurements of LTE\textsubscript{4} were performed by RP-HPLC and RIA, as described previously [17].

Statistical analysis

Values for urinary LTE\textsubscript{4} and PC\textsubscript{20}FEV\textsubscript{1} histamine were logarithmically transformed prior to analysis, and the results were expressed as geometric mean (GM). For PC\textsubscript{20}FEV\textsubscript{1} histamine, statistical analysis was only performed on subjects in whom a PC\textsubscript{20}FEV\textsubscript{1} histamine was determined. The Wilcoxon samples test was used to compare FEV\textsubscript{1}, urinary LTE\textsubscript{4} and PC\textsubscript{20}FEV\textsubscript{1} histamine between the two groups of subjects on study day one, and the changes in FEV\textsubscript{1}, urinary LTE\textsubscript{4}, PC\textsubscript{20}FEV\textsubscript{1} histamine, total IgE, and eosinophil count between study day one and two in each group of asthmatic subjects. The relationship between urinary LTE\textsubscript{4} and FEV\textsubscript{1}, PC\textsubscript{20}FEV\textsubscript{1} histamine, total IgE and eosinophil count in the subjects was analysed using Pearsons correlation coefficient.

Results

Lung function

The FEV\textsubscript{1} values for individual subjects in the two groups on study day one are shown in figure 1 and table 2. There was no significant difference between the baseline FEV\textsubscript{1} in the two groups of asthmatic subjects studied, being 3.0±0.3 l (mean±SEM) and 2.9±0.3 l (p=0.9) in subjects returning to The Netherlands and those subjects remaining in Davos, respectively.

In the group of subjects who returned to The Netherlands, there was a significant decrease in FEV\textsubscript{1} on return to Davos from 3.0±0.3 to 2.8±0.3 l (mean±SEM) (p=0.04). In subjects who remained in Davos, there was no significant difference in FEV\textsubscript{1}, which was 2.9±0.3 and 2.9±0.4 l (p=0.35) on study day one and study day two, respectively (fig. 1 and table 2).

Airway response to histamine

The PC\textsubscript{20}FEV\textsubscript{1} histamine in individual subjects on the two study days are shown in figure 2 and table 2. Subject No. 7 (study day 1) and No. 8 (study day 1 and 2) (table 2) did not respond with a 20% fall in FEV\textsubscript{1} after the maximum dose of histamine was administered. Histamine challenge was not performed in subject No. 14 because he had a resting FEV\textsubscript{1} <65% of predicted FEV\textsubscript{1} on study day one and two. There was no significant difference in PC\textsubscript{20}FEV\textsubscript{1} histamine on study day one between the two groups of asthmatic subjects. The PC\textsubscript{20}FEV\textsubscript{1} histamine was 1.7 mg·ml-1 (GM, range 0.3–16.4 mg·ml-1) (n=5) and 1.5 mg·ml-1 (GM, range 0.3–22 mg·ml-1) (n=5) (p=0.5) in asthmatic subjects returning to The Netherlands and those subjects remaining in Davos, respectively. There was a significant decrease in PC\textsubscript{20}FEV\textsubscript{1} histamine from 1.7 mg·ml-1 (GM, range 0.3–16.4 mg·ml-1) to 0.9 mg·ml-1 (GM, range 0.1–5.2 mg·ml-1) (p=0.04) (n=5) following a 14 day visit to The Netherlands. In subjects who remained in Davos, there was no significant difference in PC\textsubscript{20}FEV\textsubscript{1} histamine, which was 1.5 mg·ml-1 (GM, range 0.3–22 mg·ml-1) and 1.5 mg·ml-1 (GM, range 0.3–32 mg·ml-1) (p=0.89) (n=5) on study day one and two, respectively.
There was no significant difference between the urinary LTE4 concentration on study day one between the two groups of asthmatic subjects. The LTE4 concentration was 16.9 pg·mg⁻¹ creatinine (GM, range 0.3–101.7 pg·mg⁻¹ creatine) and 14.9 pg·mg⁻¹ creatinine (GM, range 5.9–41.9 pg·mg⁻¹ creatine) (p=0.6) in asthmatic subjects returning to The Netherlands and remaining in Davos, respectively.

There was a significant increase in urinary LTE4 concentration in the group of subjects returning to Davos from The Netherlands, from a baseline value of 16.9 pg·mg⁻¹ creatinine (GM, range 0.3–101.7 pg·mg⁻¹ creatine) to 52.3 pg·mg⁻¹ creatinine (GM, range 8.8–301.6 pg·mg⁻¹ creatine) (p=0.04) (fig. 3 and table 2). In contrast, there was no significant difference in urinary LTE4 concentration in subjects resident in Davos, whose urinary LTE4 concentration on study day 1 and 2 were 14.9 pg·mg⁻¹ creatinine (GM, range 5.9–41.9 pg·mg⁻¹ creatine) and 12.0 pg·mg⁻¹ creatinine (GM, range 5.1–25 pg·mg⁻¹ creatine) (p=0.24), respectively.

IgE and eosinophil count

There was no significant difference in total IgE levels or eosinophil counts in either group of subjects studied.

There was no significant correlation between urinary LTE4 and FEV1 (r=0.25, p=0.19; r=-0.5, p=0.91), urinary LTE4 and PC20FEV1 histamine (r=0.08, p=0.48; r=<0.01, p=0.97), urinary LTE4 and eosinophil count (r=0.18, p=0.26; r=<0.01, p=0.87), and urinary LTE4 and total IgE level (r=0.2, p=0.26; r=0.146, p=0.45) in asthmatic subjects returning to The Netherlands or resident in Davos, respectively.
Discussion

This study demonstrates that in 6 out of 8 allergic asthmatic children resident at altitude who returned briefly to sea level and then returned to altitude, there was a decline in baseline FEV₁ and an increase in airway responsiveness to histamine. These changes were accompanied by an increase in urinary LTE₄ excretion. The range of LTE₄ concentration on study day one in our subjects was similar to that observed previously in adult asthmatic subjects [20, 32], suggesting that there is no age-related difference in the range of LTE₄ concentration during stable asthma and in the absence of other disease. A raised baseline urinary LTE₄ is suggestive of aspirin-sensitive asthma [23], but there was no clinical history of aspirin sensitivity or other distinguishing clinical features in subject No. 6 who had a baseline urinary LTE₄ higher than the other subjects.

After a 2 week stay in The Netherlands, LTE₄ excretion increased up to approximately threefold, in association with a decrease in baseline FEV₁ and an increase in airway reactivity to histamine. This was not observed in subjects Nos. 4 and 5, who did not demonstrate a change in FEV₁ or PC₂₀FEV₁ histamine between the two study days. The cause of this heterogeneity in response is unknown, but may reflect the variation of reactions in asthmatic subjects to environmental factors. Medication was withheld for 8 h prior to FEV₁ measurements, urine collections and histamine challenge and there was no change in medication between the two study days. In healthy subjects, RICHALET et al. [33] observed that acute altitude hypoxia is associated with an increase in plasma LTB₄. An increase in leukotriene excretion during acute asthma in adult subjects has been reported by TAYLOR et al. [19]. A threefold increase in leukotriene excretion has also been reported following antigen and aspirin challenge in asthmatic subjects [19, 23]. LTE₄ concentration may be used to reflect systemic and pulmonary release of cysteinyl leukotrienes [31]. The increase in leukotriene excretion during a deterioration of lung function reflects an increase in cysteinyl-leukotriene biosynthesis. The cysteinyl leukotrienes may have a central role in the pathogenesis of asthma, as suggested by their recovery from the bronchoalveolar fluid of asthmatic subjects [32], activity as potent lung spasmogens, and ability to increase airway hyperresponsiveness [10–12]. Their presence may explain the decrease in lung function and increase in airway responsiveness to histamine observed in our subjects after a brief visit to The Netherlands. Consistent with prior studies, we were unable to correlate circulating mediator levels of leukotrienes, FEV₁ measurement or airway reactivity to histamine [32]. At altitude, the concentration of house dust mite allergen is reduced [27, 30], and it has been suggested that it is the decreased exposure to house dust mite which accounts for the improvement of lung function in allergic asthmatic subjects after a stay at altitude. All our subjects were sensitive to house dust mite allergen on skin-prick testing, and it is possible that increased allergen exposure to house dust mite after return to sea level resulted in the deterioration of lung function. Other allergens and irritants, such as pollutants and other factors which change with altitude (humidity, temperature, barometric pressure), should also be considered. There was no difference in total IgE level between the two study days in subjects returning to The Netherlands, although changes may not be apparent during this short
period of time. Whilst specific IgE against house dust mite was not determined during the study period in our subjects, dust mite allergen concentration from bedrooms at the Asthma Centre in Davos is low and in the region of 18 ng·g⁻¹ dust.

We did not detect a difference in blood eosinophil counts in subjects returning to The Netherlands. This is similar to the study of Boner et al. [34], where the influence of allergen avoidance at altitude on serum markers of eosinophil activation in children with allergic asthma was investigated. Whilst there was no increase in peripheral eosinophil count during allergen exposure, there was activation of eosinophils as indicated by the increase of eosinophil cationic protein (ECP) and eosinophil protein X (EPX) serum markers. It is possible that part of the increase in cysteinyI leukotrienes was due to eosinophil activation during exposure to allergen in subjects returning to The Netherlands. The involvement of other cells, such as monocytes or mast cells, as a source for leukotriene synthesis was not determined in this study.

With the exception of subject No. 14, on study day one, all subjects had controlled asthma with FEV₁ measurement >70% of predicted. A decrease in FEV₁ measurement was not observed in all subjects returning to Davos from The Netherlands. Whilst clinical severity could have been additionally assessed using peak flow readings and symptom scores, this was not possible due to poor compliance with completing peak flow charts and symptom questionnaires in the subjects. In this regard, parents were questioned about any changes in medication during the study period. Airway reactivity was assessed using PC20FEV₁ histamine, which is used routinely in The Netherlands Asthma Centre. In subjects Nos 7 and 8, airway reactivity to histamine on study day one was >32 mg·ml⁻¹. These subjects had a history of asthma and a PC20FEV₁ histamine <8 mg·ml⁻¹ on admission to the clinic 4 weeks prior to the study. An improvement in lung function and airway reactivity within a week of residence at altitude has previously been observed in altitude clinics. For this reason, the study was conducted after the subjects had been resident for one month at altitude, to optimize stable control of asthma.

In conclusion, utilizing a novel design to provoke a minor deterioration in asthma through a change in the natural environment, we have demonstrated that a decrement in FEV₁ and an increase in airways responsiveness are accompanied by augmented biosynthesis of the cysteinyl leukotrienes. These results add further support to the need to test leukotriene receptor antagonists or biosynthesis inhibitors in the treatment of asthma.

References

