CASE REPORT

Migratory bronchiolitis obliterans organizing pneumonia after unilateral radiation therapy for breast carcinoma

B. Crestani*, M. Kambouchner**, P. Soler+, J. Crequit++, M. Brauner+, J-P. Battesti*, D. Valeyre*

ABSTRACT: We report the case of a 59 year old woman who developed cough, dyspnoea and fever with patchy migratory airspace infiltrates, 2 months after right breast radiation therapy for breast carcinoma. Lung infiltrates were initially localized in the irradiated area and spread to the contralateral lung. Lung biopsy, performed in an unirradiated area of the contralateral lung 9 months after completion of radiotherapy, revealed a typical histological pattern of bronchiolitis obliterans organizing pneumonia. No cause of bronchiolitis obliterans organizing pneumonia other than radiation was found. Treatment with corticosteroids resulted in rapid clinical improvement and complete resolution of airspace opacities.

This case suggests that localized lung irradiation might trigger the development of a bilateral lung disease, with a histological pattern of bronchiolitis obliterans organizing pneumonia.

Eur Respir J., 1995, 8, 318–321.

Radiation-induced injury of the lung is well-recognized as a potential complication in the treatment of patients with carcinoma of the breast [1]. Classically, radiation pneumonitis is confined to the irradiated area, but recent studies suggest that inflammation is widespread [2, 3]. In this setting, we report the case of a woman who developed bilateral migratory infiltrates, with histologically proven bronchiolitis obliterans organizing pneumonia, after right breast radiotherapy for carcinoma.

Case report

A 59 year old nonsmoking woman was diagnosed as having an 8 mm ductal carcinoma of the right breast. A superior and external quadrantectomy was performed in October 1991, and postoperative radiotherapy was given between January 2 and February 26, 1992, using a Gammatron S (Siemens) with a 60Co source. The lower half of the right breast, the axillary area, the right supraclavicular fossa and the right internal mammary lymph node chain received 65Gy in 35 fractions over 34 days. The upper half of the right breast received 65Gy in 36 fractions over 54 days. The patient received neither chemotherapy nor hormone therapy. There was no exposure to inhaled antigens or toxins, and no history of gastro-oesophageal reflux or systemic disease.

Two months after completion of radiotherapy, a non-productive cough appeared and persisted over the following months. Four months after completion of radiotherapy, the patient began to experience nocturnal sweats and a progressive weight loss of 6 kg. Fever of 39°C was measured on different days, and a mild dyspnoea appeared. A chest roentgenogram showed an ill-defined infiltrate in the right lower lobe (in the irradiated area) with an air bronchogram present. Over the following 2 months, the patient received short courses of various antibiotics (amoxycillin, amoxycillin and clavulanic acid, ceftriaxone, and ofloxacin) with no improvement of symptoms. The patient used acetaminophen intermittently as an antipyretic drug. She denied using any other therapy. She was admitted to the pulmonology unit of Avicenne hospital in October 1992, six months after completion of radiotherapy, because of persistent fever, nonproductive cough and migratory lung infiltrates.

On examination, oral temperature was 37.7°C and bibasilar inspiratory crackles were heard. Cardiac sounds were normal. The abdomen was free of organomegaly, and no peripheral adenopathy was found. The right breast scar was painless, and the left breast was normal. Digital clubbing was absent.

A chest roentgenogram showed peripheral airspace infiltrates located at both apices and in the left axillar region. Careful review of previous roentgenograms revealed the migratory characteristic of the infiltrates, which began in the right lower lobe, then spread to the right upper lobe, left upper lobe and ultimately left lower lobe. High resolution computed tomography of the thorax (HRCT) confirmed the airspace opacities and their migratory pattern (fig. 1). There was no evidence of lymphadenopathy or pleural effusion.
Respiratory function tests (expressed as % of predicted) showed normal lung volumes (vital capacity 112% pred; total lung capacity 93% pred; residual volume 74% pred). Flow volume curves were normal. Carbon monoxide transfer capacity was 90% of predicted when corrected for haemoglobin level and alveolar volume. Data from arterial blood gases drawn whilst the patient was breathing room air were: arterial oxygen tension (PaO₂), 9.6 kPa (72 mmHg); arterial carbon dioxide tension (PaCO₂), 4.7 kPa (35 mmHg); and pH 7.47.

Haemoglobin was 100 g·l⁻¹; the white blood cell count 5.75×10⁹ cells·l⁻¹ with 60% neutrophils, 24% lymphocytes, 8% monocytes and 3% eosinophils; and platelet count 384×10⁹ platelets·l⁻¹. The one hour erythrocyte sedimentation rate was 58 mm·h⁻¹. The search for anti-nuclear antibodies, rheumatoid factor and autoantibodies to neutrophil cytoplasmic antigens was negative. Total serum complement was normal. Serum angiotensin converting enzyme level was within the normal range, as were the serum carcinoembryonic antigen (CEA) and carbohydrate-antigen 15-3 (CA 15-3) levels. Serological testing for human immunodeficiency virus (HIV-1 and HIV-2), human T-cell lymphotropic virus-1 (HTLV-1), hepatitis B and C viruses, Mycoplasma, Chlamydia and Legionella was negative. Precipitins for Aspergillus species, pigeon breeders’ disease and farmers’ lung were absent.

A bronchoalveolar lavage (BAL) was performed in a segment of the right lower lobe that was included in the radiation field (but was radiographically normal at the time of examination) and in the left lower lobe, in the nonirradiated side of the chest, in a segment that appeared abnormal on HRCT. Samples were collected and analysed separately. Enumeration of different cell types and lymphocyte phenotyping (table 1) was performed on cytocentrifugation smears after May-Grünwald-Giemsa staining. The surface phenotype of lymphocytes recovered by lavage was evaluated by indirect immunofluorescence microscopy, anti-CD4 (OKT4 and OKT4A, Ortho Diagnostics, Raritan, NJ, USA) and anti-CD8 (IOT 8, Immunotech, Marseille, France) monoclonal antibodies being used. A careful search for pathogens in BAL fluid was negative, notably viral cultures for adenovirus, myxovirus influenzae A and B, respiratory syncytial virus and cytomegalovirus were negative, and acid-fast bacilli were not detected. A left lower lobe transbronchial biopsy produced a small sample of normal lung tissue.
A surgical biopsy of the apical segment of the left lower lobe (that appeared abnormal on HRCT) was performed under videothoracoscopy in November 1992. Histo-

<table>
<thead>
<tr>
<th>Table 1. – Bronchoalveolar lavage cell data</th>
<th>Right lower lobe</th>
<th>Left lower lobe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery %</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>Total cell count (\times 10^3 \text{ml}^{-1})</td>
<td>535</td>
<td>1500</td>
</tr>
</tbody>
</table>

Differential cell count %

<table>
<thead>
<tr>
<th></th>
<th>Right lower lobe</th>
<th>Left lower lobe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrophages</td>
<td>65.2</td>
<td>20.8</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>31</td>
<td>53.8</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>0.6</td>
<td>14.8</td>
</tr>
<tr>
<td>Mast cells</td>
<td>1</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Lymphocyte phenotyping

<table>
<thead>
<tr>
<th></th>
<th>Right lower lobe</th>
<th>Left lower lobe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4+ %</td>
<td>16</td>
<td>48</td>
</tr>
<tr>
<td>CD8+ %</td>
<td>78</td>
<td>49</td>
</tr>
<tr>
<td>CD4+/CD8 ratio</td>
<td>0.20</td>
<td>0.98</td>
</tr>
</tbody>
</table>

mast cells and polymorphonuclear eosinophils in the alveolar septa (fig. 2). There was no evidence of hyaline membrane or vascular changes, which are suggestive of radiation-induced lung injury. The alterations appeared focal, since a sample obtained from the apex of the posterior segment of the left lower lobe was microscopically normal.

Treatment with corticosteroids resulted in rapid clinical improvement and complete resolution of airspace opacities. The patient was well in December 1993, six months after steroids were stopped.

Discussion

The originality of this case lies in the occurrence of a histologically proven bronchiolitis obliterans organizing pneumonia in the months following thoracic irradiation for breast carcinoma. Pathological diagnosis was obtained in an unirradiated area of the contralateral lung.

We believe that in this patient bronchiolitis obliterans organizing pneumonia was related to irradiation. Firstly, the lung infiltrates were detected initially in the irradiated area, with a temporal relationship that fitted with the usually reported delay between radiation exposure and acute lung disease [1]. Secondly, all other causes of bronchiolitis obliterans organizing pneumonia were excluded. In particular, there was no evidence of collagen vascular disease, no exposure to fume, toxins or drugs known to induce a bronchiolitis obliterans organizing pneumonia pattern [4]. Lack of effect of various antibiotics, negative serological testing, and negative search for pathogens in BAL fluid and lung biopsy make the hypothesis of an infectious process very unlikely. Moreover, there was no histological evidence of granulomas, vasculitis, or extensive infiltration with eosinophils in the lung, which could have suggested a diagnosis of extrinsic allergic alveolitis, Wegener's disease, or chronic eosinophilic pneumonia, respectively; all conditions that may indicate bronchiolitis obliterans organizing pneumonia [5].

Radiation-induced injury of the lung is a common event after irradiation for carcinoma of the breast [1]. One of its most classical features is that the pathological and radiological changes are confined to the outline of the fields of radiation [1, 6]. Two distinct clinical stages have been recognized: an early transient radiation pneumonitis which occurs about 4–12 weeks after completion of radiotherapy, and a later chronic radiation fibrosis occurring more than 9 months after treatment. The underlying pathological events are well-characterized, and consist successively in an acute exsudative phase, an organizing or proliferative phase, and a chronic fibrotic phase [1]. Certain findings, such as hyaline membranes, marked cytological atypia within hyperplastic pneumocytes, and prominent vascular changes (with thrombosis and vascular sclerosis), are suggestive of radiation-induced lung injury [6]. By contrast, a histological pattern of bronchiolitis obliterans organizing pneumonia is a very uncommon finding after radiation exposure. In the only two cases reported in the literature, this histological pattern
Radiation in animals [6, 12], most obvious in the areas of cytosis is a well-documented phenomenon after lung radiation of mast cells in the alveolar septa. Pulmonary mastocytosis is a form of immunologically-mediated hypersensitivity pneumonitis [2, 3, 9, 10]. Indeed, in a few patients, extensive radiographic changes outside the field, even in the contralateral lung, have been observed after lung irradiation [9]. Recently, a prominent lymphocytic alveolitis, more pronounced in patients developing clinical pneumonitis, has been shown to develop in both lung fields after strictly unilateral thoracic irradiation [2, 3]. We also found an increased lymphocyte count in both sides of the lungs. Lymphocytosis consisted predominantly of CD8+ lymphocytes in the right lung (that appeared normal on HRCT); whereas, CD4+ and CD8+ lymphocytes were quantitatively similar in the left lung (that appeared abnormal on HRCT). Both results are consistent with bronchiolitis obliterans organizing pneumonia [11].

A prominent finding in this patient was the increased number of mast cells in the BAL fluid, and the infiltration of mast cells in the alveolar septa. Pulmonary mastocytosis is a well-documented phenomenon after lung radiation in animals [6, 12], most obvious in the areas of fibrosing alveolitis, but also apparent in the lung tissue of normal-appearance in irradiated rats [13]. This suggests that mast cells could participate in the induction of radiation-induced lung injury through the release of various mediators [13, 14], as suspected in the pathogenesis of hypersensitivity pneumonitis due to inhaled antigens [15]. However, the precise role of mast cells is unknown, since increased numbers of mast cells are sometimes observed in BAL in bronchiolitis obliterans organizing pneumonia not associated with irradiation [11].

We believe that this case clearly indicates that, in addition to the classical radiation pneumonitis localized in the irradiated area, unilateral lung irradiation may trigger the development of migratory lung infiltrates with histological features of bronchiolitis obliterans organizing pneumonia. This diagnosis must be evoked in the case of bilateral infiltrates occurring after thoracic irradiation, as well as infection, recurrent or metastatic neoplasm, or drug-induced toxic effects.

Acknowledgements: The authors thank D. Gay, Centre de Radiothérapie et d’Oncologie Médicale, Compiègne, France, for his help in the recovery of radiotherapy data.

References