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ABSTRACT: The platelet has traditionally been associated with disorders of the
cardiovascular system; a well-recognized cell type actively involved in the maintenance
of haemostasis and the initiation of repair following tissue injury.

It has been accepted that the primary function of platelets is their adhesion to
the endothelium or to other components at sites of the injured vessel wall in the
initiation of haemostasis. However, it has been suggested that the fundamental
physiological role of the platelet within the mammalian circulation is in the defence
of the host against invasion by foreign organisms. Studies from several groups
suggest an important role of the platelet in allergic processes and immunological
mechanisms.

In this review, we have summarized the origin, physiology, activation and function
of the platelet, in addition to both experimental and clinical evidence implicating
the involvement of this cell type in certain human lung diseases.
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Despite being devoid of a nucleus, platelets possess
many of the features of classical inflammatory cells,
such as polymorphonuclear leucocytes. They can under-
go chemotaxis [1, 2]; phagocytose foreign particles [3];
contain and release various adhesive proteins; activate
complement; interact with parasites, viruses and bacteria;
alter vascular tone; enhance vascular permeability; and
take up, store and metabolize various vasoactive sub-
stances [4]. Furthermore, experiments have indicated
that platelets have the capacity to release mediators with
potent inflammatory or anaphylactic properties, such as
the ether-linked phospholipid platelet-activating factor
(PAF), or the platelet-specific protein platelet factor 4
(PF,), and so far unidentified factors able to induce
histamine release from basophils.

Origin

Platelets are small, anucleate blood elements, and under
normal conditions constitute a small fraction of the cir-
culating cells; the platelet count in healthy human blood
ranging from 1.3—4.0x105 platelets-pl-!. Classically, they
were thought to be derived from megakaryocytes in the
bone marrow by the process of fragmentation [5], althou-
gh this theory has been challenged on various grounds.
It has been suggested that megakaryocytes travel to the
lung vasculature from the bone marrow where they
physically become fragmented following impact with the
extensive capillary network [6].

Membrane receptors and surface markers

The plasma membrane represents the site of platelet
interactions with the external environment and is ultimately
involved in the control or generation of the many special-
ized functional properties of the cell. The platelet sur-
face is a typical bilayer membrane composed of protein,
lipids (predominantly phospholipids) and carbohydrate.
Platelet surface glycoproteins are essential to platelet
functions, they play a primary role in the adhesion of
platelets to exposed subendothelial matrix proteins, inter-
action with ligands such as collagen and thrombin, and
exposure of fibrinogen receptors to facilitate aggrega-
tion (reviewed in [7, 8]). Several glycoproteins of the
integrin superfamily of adhesion receptors are present on
the cell membrane. These molecules share a common
noncovalent dimeric structure and are involved in the
attachment of platelets to adhesive molecules (e.g.
fibrinogen, fibronectin). Platelet membrane integrin
molecules include the collagen receptor, the glycoprotein
Ia-Ila complex (very late activation antigen (VLA)-2)
(a,B), the fibronectin receptor, Gp Ic-Ila complex (VLA-
5) (o4B), the laminin receptor, Gp Ic'-Ila complex (VLA-
6) (04B), von Willebrand factor receptor Gp Ib-IX
complex and a vitronectin receptor o B, (reviewed in
[9]). Platelets (and endothelial cells) express a membrane
adhesion protein of the selectin family, granule membrane
protein (GMP-140) (also known as platelet-activation-
dependent granule external membrane (PADGEM) or
CD62), following degranulation. The amino-terminal
extracellular portion of this molecule contains a lectin
domain, which permits the interaction of platelets with
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leucocytes [9]. Loss of cell surface glycoproteins appears
to be a primary mechanism of platelet senescence in vivo
[10].

Platelets possess a glycoprotein receptor for the 3rd
component of complement (C3b) which resembles that
located on mononuclear cells [11], and Fc receptors both
for immunoglobulin G and E (IgG and IgE) antibodies
[12, 13].

IgE receptor

The demonstration that platelet membranes possess
IgE receptors [13, 14] has given credence to the platelet
as an inflammatory cell involved in allergic processes.
The identification of a specific IgE receptor on platelets
came from the demonstration of cytotoxic functions by
platelets from patients infected with the helminth Schisto-
soma mansoni [15]. Studies have indicated that human
platelets can bind IgE in vitro and that the cross-linking
of surface-bound IgE with anti-IgE or the specific antigens
induces platelet activation and secretion. A specific
receptor for the Fc fragment of IgE, the Fc epsilon receptor
type II (FceRII), which has been demonstrated on the
platelet membrane, is of low affinity (107 M) compared
with that found on mast cell or basophil surfaces, (Fc
epsilon receptor type I (FceRI)) (10° M) [13], but of
comparable affinity to the IgE receptor located on other
inflammatory cell types, such as alveolar macrophages
and eosinophils [16]. The FceRII is associated with the
Gp IIb-IIIa fibrinogen receptor on the platelet membrane
[16]. Only a small number of platelets from normal
individuals (20-30%) bind IgE; however, more than 50%
of the platelets from patients with aspirin-induced asthma,
allergic patients and patients with parasitic diseases bind
IgE [13, 15, 17].

A number of platelet receptors for ligands of biological
or pharmacological significance have been identified. In
recent years the major excitatory (including o.,-adrenoceptor,
adenosine diphosphate (ADP), serotonin (5-HT,), platelet
activating factor (PAF), thromboxane A, (TXA,), vaso-
pressin, thrombin) and inhibitory (including 3,-receptors,
adenosine, prostaglandin D, (PGD,), prostaglandin I,
(PGL,)) surface membrane receptors of the human platelet
have been characterized (reviewed in [7]).

Physiology

Beneath the cell membrane a bundle of microtubules
travels the entire circumference of the cell. In the resting
state this band is a flexible cytoskeleton exerting tension
outward, maintaining both the normal morphometry of
the unstimulated platelet and geographical integrity of
the organelles. The alterations in platelet shape induced
by cell activation is achieved predominantly by the
circumferential band of microtubules (the major protein
being tubulin) [18] and abundant cytosolic actin micro-
filaments [19]. In close configuration with the microtubule
band is a microfilament matrix, which provides contrac-
tile force for the secretion of cell constituents during the

platelet release reaction. Two membrane systems weave
throughout the cell interior, effectively increasing the
platelet surface area. The open canalicular system, a ran-
dom series of invaginations of the plasma membrane,
contains channels which are continuous with the extracellular
space, which facilitate secretion from the amine- and
protein-storage granules during the release reaction, and
hence serve as a conduit through which endogenous
substances pass to the cell exterior. The canaliculi also
provide ready access to the interior of the platelet for
plasma proteins and other substances [20]. The dense
tubular system, derived from megakaryocyte endoplasmic
reticulum, is associated with the circumferential microtu-
bule band. This system is implicated as a major site of
calcium sequestration, used for the initiation of platelet
activation processes.

The most numerous organelles held within the platelet
cytoplasm are the platelet granules. Dense granules
contain ADP and adenosine triphosphate (ATP), 5-HT
and Ca?. The more numerous alpha granules store
vasoactive components, which have either been synthesized
by the megakaryocyte or taken up from the circulation.
In addition, they contain a variety of proteins, some plate-
let specific, which include adhesive proteins, the "anti-
heparinoid" PF,, platelet-derived growth factor (PDGF),
B-thromboglobulin (B-TG), transforming growth factor-
B (TGF-B), fibrinogen, and clotting factors V and VIII
(von Willebrand's factor)

Platelets are capable of only limited protein synthesis.
Mitochondria are few in number, but contribute signi-
ficantly to energy metabolism of the cell by providing
ATP for the cytoplasmic metabolic pool. Lysosomes,
glycogen granules and peroxisomes are randomly distri-
buted throughout the cytoplasm.

The platelet lifespan has been estimated at 8—12 days,
using a variety of radioisotopic labelling techniques [21,
22]. Destruction of effete platelets is accomplished by
macrophages of the reticuloendothelial system in the
spleen, liver and bone marrow.

Mediators

Platelets are a rich source of a wide range of biologi-
cally active materials that are capable of inducing or aug-
menting certain inflammatory responses (table 1). Such
materials have been shown to be both preformed mediators
stored in either the dense or o granules and newly formed
mediators resulting from the perturbation of membrane
phospholipids. These substances may be released from
the cell following activation.

5-HT, stored in large amounts in human platelets, may
contribute to the inflammatory response via its vaso-
constrictor properties and capacity to increase vascular
permeability [23]. 5-HT has also been shown to stimu-
late fibroblast growth [24]. Adenosine, which can be
formed from the nucleotides stored and released by plate-
lets, may play a role in bronchoconstriction [25]; and
receptors for adenosine have been shown to be upregu-
lated in allergic rabbits compared with normal rabbits
[26].
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Table 1. — Platelet-derived inflammatory mediators

Mediator Effect

5-HT Pro-aggregation
Vasoconstriction

Fibroblast proliferation

Adenosine Bronchoconstriction

Histamine Pro-aggregation
Bronchoconstriction

PDHRF Bronchoconstriction

Airway hyperresponsiveness
Increased vascular permeability
Chemotaxis
Tissue damage
PF, Increased expression of Fc-IgG and
Fc-IgE
Chemotaxis
Airway hyperresponsiveness
PDGF Vasoconstriction
Chemotaxis
Smooth muscle proliferation
Chemotaxis
Fibroblast proliferation
Chemotaxis
Pro-aggregation
Vasoconstriction
Bronchoconstriction
PGF,, Vasoconstriction
PGE, Vasodilatation
12-HETE Chemotaxis
PAF Pro-aggregation
Vasoconstriction
Chemotaxis
Bronchoconstriction
Airway hyperresponsiveness
NO Anti-aggregation

Cationic proteins

TGF-B

RANTES
TxA+

5-HT: serotonin; PDHRF: platelet-derived histamine-releasing
factor; PF,: platelet factor 4; PDGF: platelet-derived growth
factor; TGF-B: tumour growth factor-f; TxA,: thromboxane
A,; PGF, : prostaglandin F, ; PGE,: prostaglandin E,; 12-HETE:
12-hydroxyeicosatetraenoic acid; PAF: platelet-activating factor;
IGE: immunoglobulin E; IgG: immunoglobulin G; NO: nitric
oxide.

Human platelets contain, and are capable of synthe-
sizing, histamine [27, 28], and of taking up the preformed
amine with an energy-dependent process. Histamine
release from human and guinea-pig blood has recently
been demonstrated during aggregation in vivo [29]. Exo-
genous histamine has been shown to dose-dependently
enhance platelet aggregation induced by a variety of
stimuli through a C?*-dependent, H, receptor driven process
[30]. Histamine, which is released during platelet aggre-
gation, potentiates the effect induced by proaggrega-
tory stimuli [31, 32], which may lead to a positive feedback
effect on thrombogenesis and on vascular inflammation.
Human platelets have been shown to stimulate the release
of histamine from mast cells and basophils through IgE-
dependent mechanisms [33]. Thrombin, PAF and collagen
can liberate this histamine-releasing substance from
platelets [33, 34]. In addition to causing eosinophil
chemotaxis, platelet-derived histamine-releasing factor
(PDHREF) has been shown to induce both early- and late-

onset airway obstruction as well as airway hyperrespon-
siveness in experimental animals [35].

Platelets contain cationic proteins, which can increase
vascular permeability (possibly by their action on mast
cells) [36, 37], in addition to a cationic protein that cleaves
the 5th component of complement to form a factor which
is chemotactic for leucocytes [38].

PF,, a platelet-specific protein released following
stimulation, possesses many properties that suggest a role
in allergy and inflammation. It has been demonstrated
to increase the expression of Fc-IgG and Fc-IgE receptors
[39]. PF, stimulates basophils to release histamine [40],
and has been shown not only to be chemotactic for
polymorphonuclear leucocytes, monocytes and fibroblasts
[41], but also for eosinophils [39]. The ability of PF, to
activate eosinophils is of interest because it has been
suggested that they contribute to the tissue damage
observed in asthma which may be associated with airway
hyperresponsiveness [42, 43]. PF, has recently been
shown to increase airway responsiveness to inhaled
methacholine in rats [44].

The interesting finding that the immune response
suppressed by lymphoma cells in mice could be restored
by the injection of mouse serum [45], suggested an active
role of platelets in this phenomenon. It was subsequently
shown that the substance that reversed the immuno-
suppression was PF, [46, 47]. The reversal of immuno-
suppression has been demonstrated in vitro using cultured
mouse spleen cells [48]. The ability of PF, to reverse
this immunosuppression does not appear to be related to
its ability to bind heparin [49], but may be a function of
its serine protease activity [47].

PDGEF is generally believed to be the principal mitogen
that stimulates cell division when vessel integrity has
been compromised and platelet activation has occur-
red [50]. PDGF may also act as a mediator of inflammation
and repair by affecting vascular tone (vasoconstric-
tion) [51], exerting chemotactic effects towards monocytes
and neutrophils [52], and by activating monocytes [53]
and neutrophils [50]. Smooth muscle cells and fibroblasts
are strongly attracted to low concentrations of PDGF
[54-56], suggesting that these cells may migrate to injured
sites where subsequent mitogenic stimulation furthers
repair processes [50]. Similarly, TGF-f has been shown
to be chemotactic for neutrophils and fibroblasts [57].
PDGEF released at sites of continuous vessel wall injury
has been suggested to contribute to the vascular smooth
muscle thickening which characterizes cardiovascular
diseases such as atherosclerosis [58]. Similarly, bron-
chial smooth muscle hypertrophy is a feature of the
asthmatic lung at autopsy [59, 60], and it is possible that
continuous platelet activation, recruitment and extravas-
cular diapedesis into the airways, with consequent release
of mitogens, could contribute to this feature of asthma.
The role of platelet activation in the induction of myo-
fibroblast proliferation and bronchial smooth muscle
thickening characteristic of asthma as yet remains to be
fully elucidated, although PDGF has been reported to act
as a mitogen for airway smooth muscle cells in culture [61].

Recent findings that the cytokine RANTES (a member
of the interleukin-8 (IL-8) supergene family), released



1148 C.M. HERD, C.P. PAGE

upon appropriate stimulation from platelets, is a potent
chemoattractant for both monocytes [62] and eosinophils
[63], serves as additional evidence for the contribution
of platelets to the inflammatory response.

Upon cell stimulation and activation, products of the
metabolism of membrane arachidonic acid are synthe-
sized and liberated. TxA, is a potent vasoconstrictor and
bronchial smooth muscle spasmogen [64]. Prostaglandin
F,, (PGF,,) is a vasoconstrictor, whereas prostaglandin
E, (PGE,) is a vasodilator and inducer/modulator of pain
and fever. 12-hydroxyeicosatetraenoic acid (12-HETE),
synthesized by the platelet specific enzyme 12-lipoxy-
genase on release of arachidonic acid [65], exerts chemo-
tactic activity towards eosinophils [66].

Platelets have been shown to co-operate with leucocytes
to produce chemotactic factors which the cells are unable
to synthesize in isolation. Platelet 12-HETE can be
metabolized by unstimulated neutrophils to yield 12,20-
diHETE, a unique product which cannot by synthesized
by either cell alone [65, 67, 68]. Furthermore, in the
presence of activated platelets, leucocytes can produce
increased amounts of leukotrienes because 12-hydro-
peroxyeicosatetraenoic acid (12-HPETE), produced by
platelets, can stimulate the activity of leucocyte 5-
lipoxygenase [69]. Neutrophils can also utilize arachidonic
acid from stimulated platelets for the synthesis of 5-
HETE and leukotriene B, (LTB,) [70], a mediator with
a wide proinflammatory profile [71]. PAF can also stimu-
late the synthesis of LTB, from these cells [72]. Conversely,
platelets may produce leukotriene C, (LTC,) from leuko-
triene A, (LTA,) synthesized by leucocytes via glutathione-
S-transferase [73], a powerful bronchial smooth muscle
constrictor and proposed mediator of allergic asthma
(reviewed in [74]). Both neutrophils and platelets can
release PAF in modest amounts in response to appropriate
activation stimuli [75, 76]. However, the presence of a
small number of platelets in a suspension of neutrophils
results in the generation of significantly increased amounts
of PAF, far in excess of that predicated from the individual
cell types [77]. Platelet aggregation is observed when
mixtures of leucocytes and platelets are stimulated with
leucocyte-specific agonists, a response inhibited by PAF
antagonists [78]. PAF is an extremely potent infla-
mmatory agent and has been implicated as a mediator
of inflammation and asthma (reviewed in [79]).

Neutrophils have been shown to release a factor capable
of activating platelets (neutrophilin) [80]. Platelet acti-
vation is also potentiated by neutrophils through the
production of hydrogen peroxide and oxygen free radicals
[81]. Furthermore, nitric oxide, produced from either
vascular endothelial cells, circulating neutrophils or
platelets themselves, makes a major contribution to the
control of platelet and neutrophil aggregation and
disaggregation in vivo [82].

Activation and function
Platelets play a central role in the prevention of excessive

blood loss. Intact blood vessels are lined by haemostati-
cally inert endothelial cells and, as a consequence, sub-

endothelial structures do not normally come into contact
with flowing blood. Vascular injury (either spontaneous
or traumatic interruption of vascular continuity) is the
stimulus required to initiate a series of complex and inter-
dependent reactions. Platelet surfaces will adhere to the
exposed collagen fibres, which occurs through the process
of activation of several membrane glycoproteins of the
integrin superfamily of adhesion receptors, as discussed
previously. Following platelet activation, the fibrino-
gen receptor Gp IIb-I1Ia becomes exposed, to which binds
circulating von Willebrand's factor and fibrinogen, allowing
platelet-to-platelet interactions. In addition, induction of
the membrane adhesion protein of the selectin family,
GMP-140 (PADGEM) permits the interaction of platelets
with leucocytes [9]. Under shear forces within the arterial
circulation, the Gp Ib-IX surface receptor complex is
activated, which then interacts with von Willebrand's
factor to facilitate the adherence of platelets to the vessel
wall. The cells change shape from discoid to a more
spherical form, a process mediated by the contractile
microtubular system, characterized morphologically by
the extension of short and long dendritic pseudopodia
[83]. A secretory process ensues, whereby substances
stored in platelet granules are extruded from the platelet,
i.e. the platelet release reaction. ADP discharged from
the dense granules and TxA, generated by the activation
of platelet membrane phospholipase A,, influence the
recruitment of additional circulating platelets to clump
on those already adhered to the injured site. If the flow
conditions are sufficiently disturbed, platelet aggre-
gates form on the vessel wall and serve as a focus for
the acceleration of coagulation reactions via platelet
factor 3. Contact of blood with the subendothelium and
release of the tissue factor (thromboplastin) from the
damaged vessels initiates a cascade of proteolytic reactions
in the intrinsic coagulation pathway, culminating in the
formation of thrombin. The newly formed thrombin acts
synergistically with ADP and TxA, to promote further
aggregation of platelets, to form an enlarging platelet
mass as the haemostatic plug [84]. Thrombin converts
fibrinogen, present in plasma and released from platelets,
into fibrin monomers, which polymerize to stabilize and
reinforce the platelet plug. The fibrin meshwork contains
platelets and some red and white blood cells. Platelet
contractile proteins, thrombosthenin and actomyosin, are
stimulated by thrombin and clot retraction is initiated
[84]. Subsequently, plasmin is cleaved from its plasminogen
precursor and, by its lytic action on fibrin, causes the
slow dissolution of the clot

Evidence exists for the involvement of platelets in
nonallergic defence mechanisms, such as the removal of
bacterial infections. It has long been known that platelets
play a role in a number of bacterial diseases, and the
phenomenon of adhesion between blood cellular elements
and bacteria or other foreign particles has been known
since early this century [85, 86]. Phagocytosis of foreign
particles by platelets may represent one of the mechanisms
that the platelet employs to remove bacterial invasion.
Platelets are capable of adsorption and phagocytosis due
to characteristics of their membrane system and inner
structure. The ability of platelets to perform phagocytosis
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has been observed with yeast, colloidal SiO,, barium
sulphate, ferritin and latex particles [85, 86]. Foreign
particles are captured immediately or rapidly after they
enter the bloodstream by the clumping together of platelets,
which engulf these particles and/or phagocytose them.
The clumping of platelets can be induced through the
mechanism of ADP liberation from the platelets. These
mixed thrombi are then eliminated by embolization into
the microcirculation of different organs and liberated into
the tissues at perivascular sites. Alternatively, mixed
thrombi may ultimately migrate into lymph channels.
Platelet aggregation can be induced following infection
with various bacterial pathogens [86], which can become
sequestered in clumps of platelets [87]. As a result of
the subsequent platelet release reaction (and possibly also
as a result of the production by the aggregated platelets
of chemotactic metabolites of arachidonate), the platelet-
bacterial aggregates become chemotactic for polymorpho-
nuclear leucocytes and for monocytes. Platelets release
bactericidal products, such as B-lysin [88, 89], known to
have direct bacteriocidal activity against a range of
organisms, including Bacillus, Clostridium, Micrococcus
and Lactobacillus. Even though it is not known precisely
how bacteria activate platelets, certain products of Gram-
negative bacteria, such as endotoxin (lipopolysaccha-
ride), can activate platelets directly and this can be
manifested in vivo as thrombocytopenia [90], and platelet
sequestration into various organs such as the lung, liver
and spleen [91-94]. It has been suggested that by aggrega-
ting around invading bacteria, platelets may aid the
clearance of the pathogens from the circulation, thus
reducing the risk of septicaemia.

The physiological relevance of the platelet IgE receptor
may be associated with a mechanism for aiding the
removal of parasitic infections, as platelets have been
shown to participate as effector cells in defence against
helminth parasites [15, 95]. This proposed role of the
platelet IgE receptor is reinforced by the observation that
the passive transfer of platelets bearing IgE receptor
towards schistosomes to naive rats can protect these ani-
mals from parasitic challenge [15]. The platelet IgE
receptor appears not to be associated in any way with
the formation of aggregates, but with the ability of platelets
to mount a reaginic antibody-dependent cytotoxic res-
ponse against helminth parasites, such as Shistosoma
mansoni through oxidative killing (as demonstrated in
vivo by chemiluminescence) [16]. Activation of the IgE
receptor by exposure of sensitized platelets to an appro-
priate antigen has been shown to result in the production
of cytotoxic free radicals [96, 97] in sufficient concen-
trations to kill parasites [98]. Platelets from Schistosoma
mansoni infected patients or rats expressed direct anti-
parasitic killing properties in vitro which has been in part
attributed to the IgE-mediated release of cytotoxic free
radicals [97]. The interaction of platelets with parasites
may result in cytotoxic effects on schistosomal and filarial
parasites through IgE-mediated mechanisms [4, 15]. The
capacity of platelets to induce cytotoxicity is comparable
with that observed with natural killer cells. Both these
cytotoxicities can be inhibited by scavengers of activated
oxygen species, although the exact biochemical mechanism

underlying this phenomenon remains to be determined
[99].

It appears that a distinction may exist between the
mechanism of platelet activation resulting in the generation
of free radicals and that resulting in granule release. The
latter represents classical aggregation, an event normally
associated with the contribution of platelets to haemo-
stasis and thrombosis [79]. Platelets that release free
radicals do not aggregate and platelet aggregation itself
will inhibit any subsequent free radical release [100].
This type of activation can be elicited by a range of
stimuli thought to be involved in the inflammatory res-
ponse, including C-reactive protein [95, 101], substance
P [102], the complement-derived peptides C3b and C5b-
C9 [103], the eosinophil-specific major basic protein
(MBP) [104], and the cytokines, interferon-gamma (IFN-
v) [105] and tumour necrosis factor-a [102]. Anti-allergic
compounds, such as disodium cromoglycate [106] and
nedocromil sodium [107], inhibit IgE-dependent release
of free radicals from platelets, yet these drugs are ineffec-
tive against classical platelet aggregation [108]. Further-
more, the therapeutic efficacy of certain anti-parasite
drugs, such as diethyl-carbamazine, may to some extent
be related to their ability to generate free radicals from
platelets [99].

It has been shown that a suppressive lymphokine relea-
sed by activated mononuclear cells can inhibit the produc-
tion of cytotoxic free radicals by IgE-coated platelets
[109]. This lymphokine has been termed "platelet activity
suppressive lymphokine" (PASL), a heat stable molecule
of molecular weight 15,000-20,000 and a product of a
T-lymphocyte subpopulation bearing the CD8+ antigen
[109]. Furthermore, CD4+/CDS- lymphocytes have been
observed to release factors, including IFN-y, which can
induce cytotoxic activity in normal platelets [110].

Human lung disease

Pulmonary embolism

Platelets are an important component of emboli found
within the pulmonary circulation. Pulmonary embolism
may occur as a complication of venous thrombosis or in
response to injury, sepsis or with pathologies associated
with the initiation of disseminated thrombosis [111].
Circulating platelet aggregates, with the potential to
embolize in the lungs, have been demonstrated in man
[112]. The findings of pulmonary platelet sequestration
and thrombocytopenia associated with the adult respiratory
distress syndrome (ARDS) have implicated a role for the
platelet in the development of pulmonary insufficiency
and oedema.

Studies have indicated that platelet aggregation and
release may influence the pulmonary pressor response,
not only by mechanical obstruction but as the result of
the release of vasoactive materials [113—115]. Platelet
release products have been shown to induce increased
airway resistance [113, 115] and vascular permeability
changes [36, 116—-118]. Increased permeability associated
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with the development of thrombocytopenia and pulmon-
ary sequestration of platelet aggregates has been demon-
strated [113, 115]. Furthermore, platelets may contribute
to the maintenance of vascular endothelial integrity and
have been shown to act as a permeability barrier [119,
120].

Acute lung injury in patients is generally associated
with the development of thrombocytopenia [121, 122].
In addition, microemboli containing platelets have been
observed histologically [123]. A wide variety of experi-
mental animal models of acute pulmonary dysfunction
are associated with thrombocytopenia and/or pulmonary
platelet sequestration (reviewed in [111]). Platelet accumu-
lation in the pulmonary vasculature has been demonstrated
by external scintigraphy following the injection of radio-
labelled platelets, and histologically in biopsied lung
tissue and lung tissue removed at autopsy [122, 123]. In
addition, platelet survival time is decreased in these
patients and platelet turnover is increased [122].

Various experimental models of pulmonary embolism
have been developed (reviewed in [111]). VaaGe and
co-workers [113, 115, 124-128] reported a series of
investigations concerning the effects of experimentally-
induced platelet aggregation on pulmonary function.
These studies showed that the airway and vascular con-
striction was dependent on the presence of platelets and
a stimulus which would induce platelet release in addition
to aggregation [125, 128].

Numerous techniques have been developed for the
investigation of platelet function in vivo. A non-invasive
technique for the continuous monitoring of platelets in
the circulation of anaesthetised animals was described
by PAGE et al. [129], whereby platelets are radiolabelled
and externally monitored using scintillation detectors.
The intravenous administration of a platelet agonist causes
the formation of aggregates which become trapped in the
microvasculature of the pulmonary circulation, which is
detected as an increase in radioactive counts by a detector
placed over the thoracic region of the animal. Using this
system, most doses of platelet aggregatory stimuli produce
reversible accumulation, except when the coagulation
cascade is simultaneously activated to elicit clot formation
(as assessed by ['®]]fibrinogen accumulation), as observed
following high dose intravenous thrombin administration
[130]. Spontaneous disaggregation of platelet aggre-
gates within the pulmonary vasculature suggests that there
is an endogenous mechanism for limiting platelet aggre-
gation in vivo, although it is unlikely to be secondary to
the generation of PGI, as the disaggregation produced is
not altered in animals treated with nonsteroidal anti-
inflammatory drugs (NSAIDs) [131]. However, endothelial-
derived relaxant factor (EDRF) has been postulated to
limit the extent of platelet aggregation induced by ADP
[131, 132] and collagen [132] and is a substance released
by endothelial cells in response to thrombotic stimuli
[133]. As nitric oxide (NO) accounts for the biological
activities of EDRF, the release of NO by pulmonary
endothelial cells may, therefore, contribute to disaggrega-
tion, a suggestion confirmed by the use of endogenous
inhibitors of NO generation [82]. Furthermore, local
fibrinolytic activity may result in disaggregation [134],

and recent evidence suggests that there is a synergistic
interaction between NO donors and fibrinolytic drugs in
vivo in controlling platelet accumulation [135].

Malignancy

Platelet activation is a feature both of malignant disease
[136] and experimental malignancy (the injection of
tumour cell suspensions into laboratory animals) [137].
In addition, injection of tumour cell suspensions known
to metastasize into the lungs of rats and mice rendered
thrombocytopenic, results in a decrease in the number
of metastatic lung colonies found in those animals [138].
This type of observation has led to the suggestion that
platelets have a role in the dissemination of malignant
tumours [137]. It remains plausible that, just as platelets
isolate and clear bacteria from the circulation as a
physiological defence mechanism, the facilitation of the
removal of tumour cells by platelets may accelerate a
pathological process [137]. Several experimental and
clinical studies have suggested that antiplatelet drugs may
influence the metastatic pattern of tumour spread [138],
suggesting that platelets may be a legitimate target for
future drugs used in the control of tumours. Further-
more, PDGF has a high degree of sequence homology
with one of the main oncogenes implicated in the induction
of certain types of tumour [139]. Subcutaneous admini-
stration of TGF-P induces a granulation process analogous
to that observed during wound repair, suggesting the
involvement of this factor in the process [140]. Similarly,
the release of TGF-§ following platelet activation could
be associated with diseases characterized by abnormal
cell growth.

Asthma

Asthma is characterized clinically by hyperrespon-
siveness of tracheobronchial smooth muscle to various
spasmogens, resulting in the widespread narrowing of
the airways. In recent years it has been recognized that
asthma is a chronic inflammatory disease associated
pathologically with eosinophil infiltration and damaged
airway epithelium. These underlying inflammatory events
are considered important in the development of the
enhanced airway responsiveness observed in asthmatic
individuals. Airway inflammation is a complex event
triggered by inflammatory stimuli interacting with primary
effector cells resident in the airway, of which numerous
cell types have been implicated. Release of inflammatory
mediators from these cells may recruit and activate other
effector cells, thus augmenting the inflammatory process.
Evidence now exists in support of a primary role of the
platelet in the pathogenesis of bronchial asthma. Platelets
can participate in allergic asthma by acting as inflammatory
cells, by releasing spasmogens and/or by interacting with
other inflammatory cell types.

The phospholipid PAF has been proposed as a mediator
of asthma as it can reproduce many of the characteristic
features of the disease, including bronchospasm, mucus
hypersecretion, increased vascular permeability and
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increased airway responsiveness, both in experimental
animals and man (reviewed in [79]). PAF may provide
the link between platelet activation and allergic asthma
[141], as evidence suggests that the ability of PAF to
induce airway hyperresponsiveness and eosinophil infil-
tration may involve the activation of platelets [142, 143].
PAF is released from a number of inflammatory cells in
the lung, including alveolar macrophages, eosinophils
and neutrophils. Human alveolar macrophages [144,
145] and eosinophils [146], are rich sources of PAF, and
are capable of releasing large amounts in response to
activation by IgE-dependent mechanisms. These cell
types are present in the airways of asthmatics and are
activated following antigen provocation [147, 148].
Eosinophils obtained from hypereosinophilic patients
(including asthmatics) have a much enhanced capacity
to generate PAF [146]. In addition to these inflammatory
cells [149-151], platelets [76, 149, 152] and vascular
endothelial cells [153] have been shown to release PAF,
all of which may play a role in the pathophysiology of
asthma. Furthermore, isolated lungs from sensitized
guinea-pigs have been shown to release PAF when
challenged with antigen [154].

Animal evidence

Platelets have been observed to undergo diapedesis
into the extravascular tissue of the lungs of guinea-pigs
following antigen challenge or challenge with PAF [155].
The extravasated platelets have been observed in close
proximity to bronchial smooth muscle and to infiltrating
eosinophils. However, treatment of experimental animals
with other platelet agonists such as ADP, whilst inducing
platelet aggregation in the pulmonary vasculature, does
not elicit extravascular diapedesis of platelets and eosino-
phils [155], suggesting a possible link between extravas-
cular platelets and eosinophils. Platelets have also been
reported in bronchoalveolar lavage (BAL) fluid obtained
from allergic rabbits undergoing late-onset airways
obstruction following antigen challenge [147]. Further
evidence that platelets are involved in experimental aller-
gic responses is the detection of markers of platelet acti-
vation, such as PF,, in the plasma following antigen
challenge in sensitized rabbits [156].

In several animal species, the intravenous injection of
selected platelet agonists induces thrombocytopenia
associated with bronchospasm [113, 157, 158]. This also
occurs in sensitized animals challenged with specific
antigen, which appears to be a platelet-dependent pheno-
menon, since platelet depletion protects against the lethal
consequences of the antigen provocation [159, 160]. In
isolated human bronchus, PAF only induces airway
smooth muscle contraction in the presence of platelets.
Furthermore, the intravenous administration of PAF into
guinea-pigs induces bronchospasm associated with the
accumulation of platelets in the lung [161, 162], and the
bronchospasm is platelet-dependent, since platelet depletion
abolishes the response [161]. Under these circumstances,
platelet aggregates have been located histologically [159,
163], and by the use of radiolabelled platelets [162],

within the pulmonary vasculature. It has been suggested
that this bronchoconstrictor response is reflex in origin;
however, peak changes in lung function largely (>90%)
precede detectable accumulation of '''In-labelled plate-
lets in the pulmonary vasculature [162]. Furthermore,
several classes of drugs, including the anti-asthma drugs
ketotifen and theophylline, inhibit the platelet release
reaction in vitro and platelet-dependent bronchospasm in
vivo, but do not affect platelet accumulation within the
pulmonary vasculature [164]. These observations indicate
that platelet-derived mediators contribute to the broncho-
spasm as well as, or instead of, physical obstruction of
pulmonary vessels by platelet aggregates. The dissociation
of platelet release and aggregation in vivo, with the use
of an experimental technique for the continuous monitor-
ing of platelets within the pulmonary circulation [129],
led to the development of a hypothesis that platelet
activation plays a central role in the pathogenesis of
asthma [165]. Furthermore, the pharmacological inhibi-
tion of the platelet release reaction [166, 167] or TXA,
production [168] can suppress the bronchospasm, suggest-
ing that the response is related to the release of broncho-
active agents from the platelets rather than the retention
of platelet aggregates per se.

Inhalation of allergen by an appropriately sensitized
individual may induce a delayed airway obstruction
(referred to as a late asthmatic reaction), which may be
associated with increased airway responsiveness [169].
The late-onset response to antigen challenge in IgE-
sensitized rabbits is inhibited by prior treatment with a
selective antiplatelet antiserum [170]. This phenomenon
may be attributable to an interaction between platelets
and eosinophils as the antigen-induced pulmonary eosino-
phil infiltration is inhibited in thrombocytopenic animals
[170].

In the guinea-pig and rabbit, PAF-induced airway
hyperresponsiveness is platelet-dependent, since it can
be inhibited by rendering animals selectively thrombo-
cytopenic by the intravenous administration of a specific
lytic antiplatelet antiserum [143, 171]. Activation of
platelets by PAF differs from activation by other agonists,
since ADP, collagen, thrombin or the TxA, mimetic
U46619, in amounts sufficient to cause comparable pul-
monary platelet accumulation in vivo, do not induce
airway hyperresponsiveness [172, 173]. Therefore, as
with the bronchoconstrictor response, the actual pulmon-
ary retention of platelets is not responsible for induction
of airway hyperresponsiveness, thus implicating some
other property of this cell type.

A factor released from platelets has been reported to
induce airway hyperreactivity (platelet-derived hyperreac-
tivity factor (PDHF)) [174]. The intravenous injection
of PAF into thrombocytopenic guinea-pigs does not in-
duce an acute bronchoconstrictor response nor enhanced
airway responsiveness. However, in platelet-depleted
guinea-pigs, the supernatant obtained from non-platelet-
depleted guinea-pig platelet-rich plasma (PRP) incubated
with PAF, induced airway hyperresponsiveness [174].
The generation of PDHF was inhibited by prior incuba-
tion of PRP with the stable prostacyclin-mimetic, ilo-
prost. The secretion or formation of this mediator of
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hyperresponsiveness appears to be PAF-specific, as neither
platelet disruption nor activation of platelets with ADP
induced its production. The chemical nature of this
material remains, as yet, unidentified. Ketotifen and
prednisolone have been shown to inhibit the airway hyper-
responsiveness induced by PAF-stimulated platelet
supernatants, whereas cromoglycate and aminophylline
were without effect [175]. Similarly, when ketotifen or
prednisolone were incubated with PRP prior to the addition
of PAF, the injection of supernatants into thrombocytopenic
guinea-pigs resulted in reduced airway hyperresponsiveness
[175]. In addition, human platelet-derived histamine-
releasing factor (PDHRF) has been shown to induce
airway hyperresponsiveness as well as selective pulmonary
eosinophil infiltration in allergic rabbits [35, 176].
Eosinophils and their products, such as major basic
protein, have been implicated in the pathogenesis of
asthma [42]. Platelet depletion has been shown to reduce
PAF and antigen-induced eosinophil infiltration into
the lungs of normal and allergic animals, respectively
[142, 143, 170], suggesting a central role for platelets in
the induction of eosinophil accumulation, which both
facilitates the removal of parasitic infection and contributes
to the airway hyperresponsiveness observed in asthma.
These experimental observations may be of clinical rele-
vance where thromboembolic diseases are often associated
with the hypereosinophilic syndrome and patients with
eosinophilia have coagulation abnormalities [177]. The
mechanism by which platelets attract eosinophils into the
lung may be via the release of the platelet-derived pro-
tein PF, which, as discussed earlier in this review, is
released upon platelet activation and can exert a powerful
chemotactic effect on human eosinophils [39]. Treatment
of allergic rabbits with an anti-rabbit platelet antiserum
inhibits the ability of antigen to induce late-onset airways
obstruction, airway hyperresponsiveness and the asso-
ciated infiltration of eosinophils recovered in BAL fluid
24 h following antigen challenge [170]. The PAF antagonist
BN 52021 has been shown to inhibit the late-onset res-
ponse and subsequent increase in airway responsiveness

in allergic rabbits [178, 179], as well as the eosinophil
influx and airway hyperresponsiveness in sensitized guinea-
pigs [180, 181] following antigen exposure. These find-
ings suggest that antigen-induced release of PAF may
play a role in the platelet activation necessary to initiate
the eosinophil infiltration into the airways which, in turn,
contributes to airway hyperresponsiveness.

Thrombin activation, as evidenced by the presence of
fibrinopeptide A, has been described in early and late
phase allergic responses [182], and may, therefore, activate
platelets during allergen-induced responses. However,
the precise involvement of platelets and the mechanism(s)
by which these blood elements affect inflammatory
responses is yet to be fully elucidated.

Further evidence in favour of the platelet as an important
effector cell in asthma has been provided by in vitro
studies, in which platelets potentiate mucous glycopro-
tein release from tracheal submucosal glands induced by
PAF [183].

Clinical evidence

A number of clinical studies have now revealed that
platelet activation is a feature of diseases where there is
activation of the allergic response, although such diseases
are not normally associated with thrombosis [184—194].
In certain clinical [195] and experimental [196] condi-
tions where there is known to be excessive platelet
activation in the circulation, platelets become partially
refractory to subsequent stimulation in vitro. In particular,
the second phase of platelet aggregation in vivo is often
unresponsive to physiological stimuli. A number of
studies have reported that platelets from asthmatics behave
abnormally in vitro, lacking the second wave of aggre-
gation [17, 197-199] or defective release of platelet 5-
HT, PF, [17] and platelet nucleotides [200] following
stimulation with platelet agonists. These in vitro abnor-
malities are suggestive of overstimulation in vivo [201,
202] (table 2).

In asthmatic patients the uptake of 5-HT by platelets

Table 2. — In vitro and in vivo platelet abnormalities in asthma
In vitro In vivo
Abnormal aggregation to ADP Thrombocytopenia

Abnormal aggregation to adrenaline
Abnormal aggregation to collagen

Reduced release of 5-HT and PF,
Reduced release of platelet nucleotides

Reduced uptake of 5-HT

Elevated resting levels of cytoplasmic Ca2
Elevated IP; production

Circulating platelet aggregates

Increased plasma levels of 5-HT, PF, and B-TG
Increased levels of PF, and B-TG in BAL fluid
Increased urinary excretion of TxB, metabolites

Abnormal megakaryocytes present in

lung tissue at autopsy

Reduced platelet survival time

Reduced platelet regeneration time

Increased bleeding time

Increased platelet size

Increased platelet mass

Accumulation of platelets in lung microvasculature
Increased platelet numbers in BAL fluid

ADP: adenosine diphosphate; 5-HT: serotonin; PF,: platelet factor 4; B-TG; B-thromboglobulin; BAL:
bronchoalveolar lavage; TxB,: thromboxane B,; IP;: inositol-triphosphate.
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has been shown to be attenuated, possibly due to previous
exposure of platelets to an increased concentration of this
amine [203]. Increased plasma levels of 5-HT have been
reported in asthmatics [204], as well as elevated resting
levels of cytoplasmic Ca?* and inositol-triphosphate (IP;)
production [205], findings suggestive of in vivo platelet
stimulation.

Thrombocytopenia was first reported to accompany
asthmatic attacks in 1955 [184]. This observation of
platelet activation in vivo during provoked or spontaneous
asthmatic attacks has also been shown by the detection
of circulating platelet aggregates [186, 192], or the
morphological characterization of activated platelets in
the circulation [187]. Furthermore, a number of studies
have demonstrated the release of two platelet-specific
proteins, PF, and B-TG, into the circulation associated
with bronchoconstriction induced by antigen or exercise
[185, 186, 188, 189, 192, 206]. The release of these
markers is indicative of in vivo platelet activation and,
in the study of KNAUER e al. [185], the increased plasma
levels of platelet-derived markers occurred in parallel
with the bronchoconstriction induced by antigen provocation
of allergic asthmatics. Release of PF, and B-TG was not
observed following comparable bronchoconstriction in-
duced by methacholine, suggesting that the platelet-derived
markers were released as a consequence of the allergic
reaction rather than of the bronchoconstriction.

Evidence of platelet activation has been reported in
plasma obtained ex vivo during exacerbations of nocturnal
asthma [207, 208], which has recently been shown to
correspond with airway hyperresponsiveness [208]. In
another recent study, PF, and B-TG have been demon-
strated in BAL fluid from allergic asthmatics following
antigen challenge [209]. Platelet products were signifi-
cantly elevated during the late inflammatory response to
antigen and were significantly correlated with elevations
in markers of airway permeability (albumin), eosinophil
granule proteins (eosinophil-derived neurotoxin (EDN)
and eosinophil peroxidase (EPO)) and inflammatory
prostanoids (PGE, and PGF,,,). Furthermore, TxA, release
has been shown to accompany the exposure of allergic
asthmatics to inhaled antigen, by measurement of urinary
excretion of TxB, metabolites [210].

Release of platelet-derived factors, such as PF,, B-TG
and TxB,, and altered in vivo platelet aggregatory res-
ponses have not been consistently observed [211-215].
Furthermore in some studies, pulmonary platelet seques-
tration was not found to follow antigen challenge in asth-
matic volunteers [215, 216]. However, numerous other
clinical observations support the concept that platelets
may be involved in this disorder. In lung tissue removed
at autopsy from patients dying from status asthmaticus,
abnormal megakaryocytes have been reported to be pre-
sent in abundance [193, 217], suggestive of a potential
abnormality in this system. Platelet survival time in
atopic asthmatics is severely shortened, a finding sugges-
tive of continuous cell activation [191]. Shortened platelet
regeneration time, an index of in vivo platelet activation
associated with accelerated platelet consumption (i.e.
increased platelet turnover) [218], has been reported in
asthmatics undergoing acute asthma attacks [192], and

increased bleeding time has been observed in a group of
atopic asthmatics [190]. In addition, altered responsive-
ness of platelets from allergic patients has been observed
by numerous investigators (reviewed in [192]), the inci-
dence being greatest in patients presenting with high
serum IgE titres [17]. Furthermore, platelet size [219],
platelet count and platelet mass [190] have been found
to be increased in asthmatics.

Platelets have been reported to accumulate in the
microvasculature of the lung in patients undergoing
bronchial provocation with allergen [148], and have also
been detected by electron microscopy in BAL fluid
obtained from allergic asthmatics undergoing late-onset
airways obstruction following antigen provocation [147].
In this clinical situation, the extravascular platelets were
observed in close association with other inflammatory
cells, such as the eosinophil [147]. In addition, platelets
have been observed undergoing diapedesis in sections
biopsied from asthmatics (see [220]). Subepithelial
extravasation of platelets together with fibrinous material
has been observed at sites of denuded epithelium in
bronchial biopsies from symptomatic asthmatics [221].
A recent study reports that platelets from asthmatic subjects
migrate in vitro in response to antigen, possibly by
interaction with platelet-bound antigen-specific IgE [2].

The fate of platelets in the circulation of asthmatics is
unknown, although overt trapping in the pulmonary
vasculature is not a feature of either stable asthmatics or
those undergoing bronchoconstriction [192].

Aspirin-induced asthma

Platelets isolated from patients with aspirin-induced
asthma exhibit an abnormal response to aspirin in vitro
compared with normal individuals or allergic non-aspirin-
sensitive asthmatics, generating cytotoxic mediators and
oxygen-derived free radicals in the presence of acetyl
salicylic acid (ASA; aspirin) or various NSAIDs, such
as indomethacin [98]. Basophils from ASA-sensitive
patients do not release histamine, and monocytes do not
express cytotoxic properties or any burst of chemilumine-
scence in the presence of aspirin or other NSAIDs.
Evidence does not support a role of IgE in this response,
since serum from patients was unable to passively sensitize
platelets removed from healthy volunteers to NSAIDs,
as well as the absence of an inhibitory effect of polyclonal
or monoclonal antibodies against the FceRII. It has been
suggested that the abnormal response of platelets from
ASA-sensitive asthmatics may reside in the involvement
of endogenous prostaglandin H, (PGH,) in the control
of synthesis and/or biological effect of platelet lipoxy-
genase products [222].

It has previously been shown that sodium cromogly-
cate and nedocromil sodium could modulate in vivo
platelet responsiveness to aspirin in ASA-sensitive
asthmatics [223], with nedocromil sodium being approxi-
mately 500 times more potent in inhibiting the response.
Similarly, inhalation of nedocromil sodium by ASA-
sensitive asthmatics resulted in a dramatic inhibition of
platelet responsiveness to aspirin (platelet cytotoxicity)
when examined ex vivo [224]. Since the platelet is the
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only cell so far shown to respond to aspirin or other
NSAIDs in ASA-sensitive asthmatics, these findings
provide further evidence for a major role of the platelet
in this form of bronchial asthma.

Therapeutic perspectives

Animal studies have shown that several selective, but
structurally unrelated PAF antagonists inhibit various
aspects of asthma pathophysiology, including antigen-
induced bronchoconstriction, late phase response, airway
hyperresponsiveness, oedema formation, mucus hyper-
secretion and pulmonary eosinophil infiltration (reviewed
in [225]). As yet, there are few reported clinical studies
of PAF antagonists in humans. Pretreatment with BN
52063 has been shown to attenuate the response to PAF
in the skin of normal subjects [226], and to antigen-
induced cutaneous responses in atopic subjects [227].
BN 52063 has also been shown to reduce the bronchocon-
strictor response to inhaled PAF in normal volunteers
[228], whereas WEB 2086 [229] and UK-74,505 [230]
completely abolished the response. Furthermore, BN
52063 [231] and BN 52021 [232] have been shown to
inhibit the immediate bronchoconstrictor response to
inhaled allergen. Recent findings with UK-74,505, the
most potent PAF antagonist yet studied in man [233],
confirm preliminary reports of WEB 2086 [234] and MK-
287 [235], which have shown no effect on the early or
late response to inhaled allergen in mild atopic asthmatics
or on the subsequent airway hyperresponsiveness.

The lack of effect of these PAF antagonists against
allergen challenge in man, despite achieving plasma levels
capable of inhibiting ex vivo platelet aggregation indu-
ced by PAF, may be due to a number of reasons. Firstly,
PAF may not be as important a mediator in asthma as
previously thought. Secondly, PAF released in vivo is
a family of related compounds, whereas PAF antagonists
have been developed as antagonists to PAF C. It is
possible, therefore, that other PAF homologues may be
of biological significance. Thirdly, current PAF anta-
gonists have not been designed to penetrate cells and,
thus, may not interact with intracellular receptors. As
the bulk of PAF appears to be retained intracellularly in
a variety of cell types [236], PAF antagonists may need
to be able to enter cells or PAF synthesis may need to
be inhibited, rather than its extracellular effects antagonized
[237].

Treatment of atopic asthmatic individuals with anti-
asthma drugs, such as glucocorticoids and ketotifen, has
been shown to correct abnormal platelet survival [194].
A recent study reports that in asthmatic subjects the anti-
allergy drug nedocromil sodium inhibits platelet activation
induced by PAF ex vivo [238]. Therefore, the efficacy
of these drugs may reside in their ability to restore normal
platelet behaviour.

Conclusion

Evidence exists to implicate an active role for the
platelet in primary defence mechanisms, such as antibody-
dependent cytotoxicity. Inappropriate activation of this

system in allergic patients may contribute to eosinophil
infiltration and subsequent damage to the host tissue
resulting in the heightened airway responsiveness charac-
teristic of bronchial asthma.
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