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Abstract
Background Lung function is a heritable complex phenotype with obesity being one of its important risk
factors. However, knowledge of their shared genetic basis is limited. Most genome-wide association
studies (GWASs) for lung function have been based on European populations, limiting the generalisability
across populations. Large-scale lung function GWASs in other populations are lacking.
Methods We included 100285 subjects from the China Kadoorie Biobank (CKB). To identify novel loci for
lung function, single-trait GWAS analyses were performed on forced expiratory volume in 1 s (FEV1), forced
vital capacity (FVC) and FEV1/FVC in the CKB. We then performed genome-wide cross-trait analysis
between lung function and obesity traits (body mass index (BMI), BMI-adjusted waist-to-hip ratio and BMI-
adjusted waist circumference) to investigate the shared genetic effects in the CKB. Finally, polygenic risk
scores (PRSs) of lung function were developed in the CKB and their interaction with BMI’s association on
lung function were examined. We also conducted cross-trait analysis in parallel with the CKB using up to 457
756 subjects from the UK Biobank (UKB) for replication and investigation of ancestry-specific effects.
Results We identified nine genome-wide significant novel loci for FEV1, six for FVC and three for FEV1/
FVC in the CKB. FEV1 and FVC showed significant negative genetic correlation with obesity traits in
both the CKB and UKB. Genetic loci shared between lung function and obesity traits highlighted
important biological pathways, including cell proliferation, embryo, skeletal and tissue development,
and regulation of gene expression. Mendelian randomisation analysis suggested significant negative causal
effects of BMI on FEV1 and on FVC in both the CKB and UKB. Lung function PRSs significantly
modified the effect of change in BMI on change in lung function during an average follow-up of 8 years.
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Conclusion This large-scale GWAS of lung function identified novel loci and shared genetic aetiology
between lung function and obesity. Change in BMI might affect change in lung function differently
according to a subject’s polygenic background. These findings may open new avenues for the development
of molecular-targeted therapies for obesity and lung function improvement.

Introduction
Impaired lung function is associated with lung disease risk and mortality, such as chronic obstructive
pulmonary disease (COPD) [1]. Clinical and epidemiological studies have shown many risk factors can
affect lung function [2]. Among these risk factors, obesity has been one of the most rapidly growing public
health issues with a nearly tripled prevalence over the past 30 years [3]. Specifically, according to a
population-based study on 121965 subjects, obesity is associated with approximately 2 times higher risk of
reduced lung function (e.g. forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC)) [4].
Obesity is also associated with increased risk of respiratory diseases, such as asthma and COPD [4, 5].
However, such findings have also raised new questions about whether the genetic risk factors can
contribute to the coexistence of lung function reduction and obesity.

We and others have recently identified shared genetic architecture among respiratory diseases, including
asthma and COPD [6–9], indicating pleiotropic effects impacting both diseases. Lung function and obesity
are both highly heritable traits, with an estimated heritability up to 70% [10–14]. The inverse association
between lung function and obesity suggested potential shared genetic risk factors between these
conditions [15]. However, knowledge of the shared genetic basis of lung function and obesity is limited.

To date, most lung function genome-wide association study (GWAS) participants have been of European
descent [13, 14, 16, 17]; only few studies included a small number of non-European participants [18, 19].
Thus, large-scale GWASs based on non-European populations are critical to extend our understanding of
the genetic heterogeneity across different populations [20, 21]. In addition, it is critical to understand the
shared genetic architecture of lung function with other complex traits (e.g. obesity), which is robust to
environmental confounding [22]. Thus, in the current study, we conducted a large-scale GWAS and
cross-trait/cross-population analysis in the China Kadoorie Biobank (CKB) and UK Biobank (UKB) to
address three aims: 1) to identify novel genetic risk loci for lung function traits that include FEV1, FVC
and FEV1/FVC in the Chinese population; 2) to investigate shared genetic effects between the lung
function traits and obesity traits (body mass index (BMI), BMI-adjusted waist-to-hip ratio (WHRadjBMI)
and BMI-adjusted waist circumference (WCadjBMI)) in both Chinese and European populations; and 3)
by using both the CKB and UKB follow-up cohorts, to investigate whether the baseline BMI and
longitudinal change in BMI would affect lung function, taking into account the polygenic background of
lung function.

Methods
Study design, settings and participants
The overall study design can be found in figure 1. In brief, this study has two analytical stages. The first
stage is to identify novel loci for lung function in the Chinese population by using single-trait GWAS
analysis. The second stage is to investigate shared genetic effects between lung function and obesity by
using cross-trait GWAS analysis in both the CKB and UKB.

The CKB study is a prospective cohort study of more than 500000 participants in China. Details of the
CKB have been described previously [23]. In brief, the CKB recruited 512715 adults aged 30–79 years
from 10 regions (Harbin, Qingdao, Suzhou, Liuzhou, Haikou, Henan, Gansu, Sichuan, Zhejiang and
Hunan) across China. All participants gave informed written consent. Questionnaire data, physical
measurements and blood samples were collected at the baseline survey during 2004–2008. Two follow-up
surveys were taken in 2008 and during 2013–2014, which involved ∼5% randomly chosen surviving
participants.

The UKB study has been described in detail elsewhere [7, 24]. In brief, the UKB study is a prospective
cohort study of more than 500000 participants living in the UK. In total, 503325 participants registered in
the National Health Service with ages ranging from 40 to 69 years were recruited out of 9.2 million mailed
invitations. Baseline data were collected (2004–2008) using questionnaires and anthropometric assessments
were performed. In the UKB, we restricted to subjects of European ancestry. All detailed genotyping,
quality control and imputation procedures are described in the UKB website (http://biobank.ctsu.ox.ac.uk).
All participants provided informed consent to the UKB.
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Ascertainment of lung function and obesity traits
FEV1, FVC and FEV1/FVC were adjusted for age, age squared, sex, height, smoking status (ever versus
never) and assessment centre in a linear regression model [14]. The resulting residuals were inverse normal
transformed [14].

BMI (measured or self-reported weight in kilograms per height in metres squared) was adjusted for age,
age squared, sex and assessment centre in a linear regression model [14]. Waist and hip circumferences
were also measured in the CKB and UKB participants. The waist-to-hip ratio and waist circumference were
adjusted for age, age squared, BMI, sex and assessment centre in a linear regression model. The resulting
residuals were inverse normal transformed. Detailed physical measurement procedures can be found in the
supplementary material, the previous CKB study [25] and the UKB website [26].

CKB genotyping procedure
The CKB has conducted three phases of genotyping. A custom-designed biobank array, to provide
optimised genome-wide coverage for the Chinese population, was developed by the University of Oxford’s
Clinical Trial Service Unit and Epidemiological Studies Unit (Oxford, UK) in collaboration with the
Beijing Genomics Institute (Shenzhen, China) and Affymetrix (now Thermo Fisher Scientific, Santa Clara,
CA, USA). This 700K single nucleotide polymorphism (SNP) array was used to genotype ∼32000 CKB
participants in the first phase. A revised and updated version of the original array which covers ∼803K
SNPs was used to genotype ∼69000 participants in the second and third phases.

Variants with call rate >0.98, plate effect p>10−6, batch effect p>10−6, Hardy–Weinberg equilibrium
(HWE) deviations p>10−6 (combined 10 degrees of freedom Chi-squared test from 10 regions) and minor
allele frequency (MAF) difference from 1000 Genomes East Asian frequencies <0.2 were identified,
resulting in genotypes for 532415 biallelic variants present on both array versions. The qualified
genotypes for each chromosome were phased with SHAPEIT. Then, imputation was performed for each
5-Mb interval with IMPUTE 4 based on haplotypes derived from the 1000 Genomes phase III.

GWAS analysis
We selected variants that did not deviate from HWE (p>1×10−12), per variant missing rates <10%, per
sample missing rate <10%, MAF >1% and imputation quality score (INFO) >0.8. Detailed data summary,
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FIGURE 1 Overall study design. FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; BMI: body mass index; WHRadjBMI: BMI-adjusted
waist-to-hip ratio; WCadjBMI: BMI-adjusted waist circumference.
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quality control and imputation information can be found in the supplementary material. The genotype–
phenotype association test was carried out in 100285 samples from the CKB and up to 457756 samples
from the UKB. For lung function and obesity traits, we carried out linear mixed model (LMM) association
analyses and adjusted for genotyping array, 10 ancestry principal components in the CKB and 30 ancestry
principal components in the UKB to assess the association between the traits’ z-scores and imputed
genotype dosages under an additive genetic model by using BOLT-LMM version 2.3 [27]. After
association analysis, we applied the PLINK clumping function to determine top loci that were independent
to each other. Specifically, variants with p<1×10−5, r2>0.2 and <500 kb away from the peak were assigned
to that peak’s clump. The genes within each clump were identified by the overlap between gene regions
and clump region. Novel loci were defined at two levels: clump and variant (supplementary material).
In brief, if the independent clump region did not overlap with any loci in the GWAS catalogue (search
date: 3 April 2020) for the same trait, we defined it as a novel locus. If there was an overlap between the
clump region and GWAS catalogue, we further checked if the sentinel variant was novel, which is defined
by low linkage disequilibrium (LD) r2<0.2 between the sentinel variant and any variants within the clump
region from the GWAS catalogue.

Cross-trait genetic correlation
We used cross-trait LD score regression (LDSC) to estimate genetic correlation between the causal effects
of two traits (ranging from −1 to 1) based on summary statistics of each trait’s GWAS [28]. We specified
LDSC to estimate the regression intercept to account for shared subjects between different traits’ GWAS
[29]. We applied Bonferroni correction (p<0.05/9) to account for multiple testing in the LDSC analysis.

Sex-specific genetic correlation
Previous studies showed the association between lung function and obesity could differ in males and
females [30, 31]. Thus, we evaluated the genetic correlation between lung function and obesity in males
and females separately.

Cross-population genetic correlation
To assess the genetic heterogeneity between Chinese and European populations, we also estimated
genome-wide cross-population genetic correlation for lung function and obesity traits by applying S-LDXR
[32] with the baseline-LD-X model annotations. We applied Bonferroni correction (p<0.05/6) to account
for multiple testing in the S-LDXR analysis.

Cross-trait meta-analysis
Cross-phenotype association (CPASSOC) combines the effect estimate and standard error of the GWAS
summary statistics to test the hypothesis of association between the SNP with both traits [33].
A heterogeneous version of CPASSOC (SHet) was used in this study.

SHet is a cross-phenotype meta-analysis method based on a fixed effects model. It is more powerful
when there is a heterogeneous effect present across studies, which is common when testing multiple
phenotypes [34]. SHet uses the sample size of a trait as the weight instead of using the effect standard
error. It can also account for effect correlation due to overlapping or related subjects within and among
different studies or cohorts.

Overrepresentation enrichment analysis
In order to understand the shared biological pathways between lung function and obesity, we extracted the
genes from the clumping procedure for both lung function and obesity, and used the WebGestalt tool [35]
to assess the enrichment of the identified genes in Gene Ontology (GO) biological pathways. If they were
significantly enriched in both lung function and obesity, we considered them as shared biological
pathways. A false discovery rate (FDR) method was used to correct for multiple testing.

Mendelian randomisation analysis
We applied generalised summary data-based Mendelian randomisation (GSMR) [36] under default settings
to infer putative causal relationships between BMI and lung function traits from GWAS summary statistics.
To avoid overlapping subjects in the MR analysis, we used the BMI GWAS from Biobank Japan (n=158
284) [37] and the lung function GWAS from the CKB, and we used the GIANT BMI GWAS (nmax=322
154) [12] and the lung function GWAS from the UKB. A more detailed description of the Biobank Japan
and GIANT GWAS data can be found in the supplementary material. Since GSMR requires a minimum of
10 LD-independent instruments with p<5×10−8, we restricted our analyses to traits that satisfy this
criterion. Prior to running GSMR, we removed SNPs with strand ambiguity, INFO <0.9 and in the human
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leukocyte antigen (HLA) region (chr6:25–34M). We applied Bonferroni correction (0.05/6) to account for
the number of trait pairs in the MR analysis.

Lung function polygenic risk score and BMI interaction (PRSlung function×BMI) analysis
We constructed the polygenic risk scores (PRSs) for three lung function traits using LDpred [38]. Details
of PRS construction can be found in the supplementary material. We also constructed three additional lung
function PRSs using weights of 279 SNPs reported by SHRINE et al. [14] (only 275 SNPs were available in
the CKB data). To investigate the interaction effect between lung function PRSs and baseline BMI or its
longitudinal change (nCKB=21791 and nUKB=12019) on lung function, we fitted two linear regression
models to test the PRSlung function×BMI effect:

Baseline model:

Lung functiont0 ¼ BMIt0 þ lung function PRSþ BMIt0 � lung function PRSþ other covariates

Change model:

Lung functiont1 � lung functiont0 ¼ BMIt0 þ (BMIt1 � BMIt0)þ lung function PRSþ (BMIt1 � BMIt0)

� lung function PRSþ other covariates

where baseline (t0) is at 2004–2010 and follow-up (t1) is at 2012–2014; other covariates are principal
components 1–10 for the CKB and principal components 1–30 for the UKB, age, age squared, sex,
standing height, smoking status (ever/never), genotyping array, and assessment centre. For the baseline
model, we set normal BMI and the deciles 2–9 group as reference; for the change model, we set BMI
stable and the deciles 2–9 group as reference.

Results
GWAS and SNP-based heritability
The baseline demographic characteristics of the CKB and UKB cohorts are summarised in supplementary
table S1. GWAS results for all traits showed no evidence of inflation due to population stratification
(supplementary figures S1 and S2). In the CKB, LDSC estimates of SNP-based heritability on the
observed scale were (mean±SE) 13.07±0.88% for FEV1, 11.12±0.82% for FVC, 5.12±0.67% for FEV1/
FVC, 21.77±1.23% for BMI, 8.72±0.83% for WHRadjBMI and 10.65±0.95% for WCadjBMI. We
identified 28 genome-wide significant (p<5×10−8) loci for FEV1, 10 for FVC and 10 for FEV1/FVC
(figure 2). After comparing with GWAS catalogue results for FEV1, FVC and FEV1/FVC (supplementary
tables S2–S4), we determined a total of 18 novel loci for the three lung function traits (table 1). We further
conducted the replication analysis for the novel loci in a recently published large-scale lung function
GWAS (supplementary table S5) by SHRINE et al. [14]. A total of 11 loci were available in the SHRINE
et al. [14] data. Among them, we found four were significant (p<0.05/13) with consistent effect size
direction. The nonreplicated loci were likely due to distinct effect allele frequencies between the CKB and
SHRINE et al. [14] (supplementary table S5). For example, the MAF of the sentinel SNP rs1861229 in the
CKB is 0.52, but 0.17 in the SHRINE et al. [14] study. Among these previously reported loci showing
genome-wide significant association with lung function in SHRINE et al. [14], AGER, AP4M1, DIS3L2,
FAM13A, FGF10, HLA-DQA1 and HTR4 are notable genes that play important roles in lung function. In
terms of novel loci, we identified GPC5 as a novel gene for FEV1 (sentinel SNP rs528366: p=2.30×10−8).
In addition, we identified 20q11.23 as a novel region for FVC (sentinel SNP rs6063386: p=5.00×10−10).
The sentinel SNP is mapped to a long intergenic nonprotein coding RNA (lncRNA), LINC00489. Among
the novel loci for FEV1/FVC, two are within the 6p21.33 region and the sentinel SNP was mapped to
TNXB, which was known for its association with lung function traits (FEV1 and FEV1/FVC) and COPD
[39, 40]. Detailed summary statistics information on genome-wide significant loci for the three lung
function traits can be found in supplementary tables S6–S8.

In the UKB, LDSC estimates of SNP-based heritability on the observed scale were (mean±SE) 20.13±0.76%
for FEV1, 20.26±0.74% for FVC, 23.95±1.43% for FEV1/FVC, 27.41±1.07% for BMI, 13.88±0.94% for
WHRadjBMI and 16.58±0.83% for WCadjBMI. The single-trait GWAS results are consistent with the
SHRINE et al. [14] study.
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Genetic correlation between lung function and obesity traits
We investigated the genetic correlation between lung function and obesity traits in both the CKB and
UKB. As shown in figure 3, we found that two lung function traits have significant negative genetic
correlation with obesity traits in the CKB (e.g. Rg=−0.26, p=5.99×10−9 for FEV1–WCadjBMI, Rg=−0.11,
p=5.44×10−3 for FVC–BMI and Rg=−0.28, p=2.24×10−10 for FVC–WCadjBMI). We found that the
genetic correlation is generally stronger between lung function and central obesity traits than BMI. The
UKB genetic correlations also showed consistent findings with the CKB in most of the trait pairs, although
different for one trait pair (e.g. Rg=0.15, p=7.92×10−24 for FEV1/FVC–BMI in the UKB, but not
significant in the CKB) (figure 3). Sex-specific analyses found stronger genetic correlation between lung
function and obesity traits in females than in males (supplementary tables S9 and S10). In addition, the
cross-population genetic correlation analysis showed that one of these traits had an estimated
cross-population Rg significantly <1 (Rgcross-population=0.86, p=3.76×10

−6 for BMI) (supplementary table
S11).

Cross-trait meta-analysis
For the trait pairs that showed significant genetic correlation after Bonferroni correction (we also included
the BMI–FEV1 trait pair despite p=0.038), we applied CPASSOC for genome-wide cross-trait
meta-analysis to identify shared genetic variants among each of the trait pairs (pmeta<5×10

−8; single-trait
p<1×10−5). A total of six trait pairs in the CKB and seven trait pairs in the UKB were included for the
cross-trait meta-analysis. In the CKB, after pruning, we found seven loci significantly associated with BMI
and FEV1, five loci with WHRadjBMI and FEV1, seven loci with WCadjBMI and FEV1, four loci with
BMI and FVC, one locus with WHRadjBMI and FVC, and one locus with WCadjBMI and FVC. Among
these loci, we highlighted three shared loci since they were shared loci in multiple pairs of lung function
and obesity traits. The first locus is DIS3L2 on 2q37.1 (BMI–FEV1, WCadjBMI–FEV1, BMI–FVC and
WCadjBMI–FVC). The second locus is HLA-DQA1 (BMI–FEV1 and BMI–FVC). The third locus consists
of several sentinel SNPs that were all mapped within 12p13.2, with genes including ATXN2 and ACAD10
(table 2). Out of the 25 shared loci identified in the CKB, five of them were also identified in the same
trait pairs in the UKB (table 2 and supplementary tables S12–S18).

Pathway analysis
To gain biological insights into the shared genes, we assessed the enrichment of the independent loci for
each trait and the identified set of shared genes between lung function and obesity traits in GO biological
process categories, and observed many significant enrichments in the UKB results (FDR: q<0.05 for both
traits) (supplementary table S19). Consistent with the gene function of shared loci, GO biological process
highlighted several common biological pathways for lung function and obesity traits, such as cell
proliferation, embryo, skeletal and tissue development, and regulation of gene expression. However, we did
not observe any significant enrichment in the CKB results.

Mendelian randomisation
We applied GSMR to perform causal inference between BMI and lung function traits. In the East Asian
population analysis, we observed a significant negative causal effect of BMI (per standard deviation) on
FEV1 (bxy=−0.08, p=2.46×10−4) and FVC (bxy=−0.11, p=3.44×10−7) (table 3). We did not observe a
significant causal effect of BMI on FEV1/FVC. In the reverse direction, we observed either a small
magnitude or nonsignificant causal effect.

PRSlung function×BMI analysis
We constructed seven PRS models from LDpred for each lung function trait and selected the PRS model
with the highest discriminatory performance (R2) for interaction analysis (supplementary table S20). We
found a significant interaction between baseline BMI and PRS of FEV1/FVC on FEV1/FVC (p=0.011)
(figure 4a and supplementary table S21). Generally, compared with the reference group, the bottom PRS
decile plus underweight group has the lowest FEV1. For FVC, the largest reduction was found in the

FIGURE 2 Manhattan plots for genome-wide association analysis of 100285 Chinese subjects in the China
Kadoorie Biobank cohort for three lung function traits: a) forced expiratory volume in 1 s (FEV1), b) forced vital
capacity (FVC) and c) FEV1/FVC. The x-axis denotes the genomic position (chromosomes 1–22); the y-axis
denotes the –log10(p-value) of association test and starts at –log10(p-value)=3. The most significant novel
variant in each independent clump is highlighted by an orange diamond symbol. Genes in black were
previously reported and genes in red are novel. An asterisk on some genes indicates a novel variant. The
genome-wide significance level (p=5×10−8) is denoted by the red line.
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bottom PRS decile plus obese group. For FEV1/FVC, we observed that the bottom PRS decile plus
underweight group had the lowest FEV1/FVC, and overweight and obese groups had increases. In the
change model, we found a significant interaction between change in BMI and PRS of FVC (p=0.038) on
change in FVC or between change in BMI and PRS of FEV1/FVC (p=0.007) on change in FEV1/FVC
(figure 4b and supplementary table S21). Overall, compared with the reference group, the BMI increase
group had reduced FEV1 and FVC, and the effect was largest in the top PRS decile. For the UKB, we did
not find a significant interaction effect in the baseline model. However, we found a borderline significant
interaction between change in BMI and PRS of FVC (p=0.068) on change in FVC (supplementary table
S22 and supplementary figure S3). Finally, we constructed additional lung function PRSs using weights of
275 SNPs from the SHRINE et al. [14] study and did not find any significant PRSlung function×BMI effect
(supplementary table S23 and supplementary figure S4).

Discussion
To the best of our knowledge, the current study is the largest GWAS of lung function in the Chinese
population. We found a strong genetic correlation and shared genetic loci between lung function and

TABLE 1 18 novel loci associated with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC in the China Kadoorie
Biobank

Trait Sentinel
SNP

Clump region N A1 A2 A1
FREQ

BETA SE p-value Genes within clump region

FEV1 rs145972739 chr1:200031115
–200031115

1 A G 0.97 −0.083 0.015 4.90×10−8 NR5A2

rs1861229 chr2:102992079
–103208610

28 A G 0.52 0.026 0.005 2.60×10−8 IL18R1, IL18RAP, MIR4772, SLC9A4

rs28695435 chr2:232797462
–233092939

181 G A 0.31 −0.029 0.005 1.40×10−9 DIS3L2

rs222482 chr2:42391012
–42703861

188 C T 0.27 −0.028 0.005 4.70×10−8 COX7A2L, EML4, KCNG3, LOC102723824

rs112952987 chr2:42638788
–42703942

21 G A 0.94 0.050 0.009 3.40×10−8 KCNG3

rs117331805 chr5:43813683
–44687091

96 A G 0.94 −0.076 0.010 3.50×10−15 FGF10, FGF10-AS1

rs117675260 chr5:44474070
–44623745

28 G A 0.96 −0.069 0.012 2.10×10−8 Intergenic region

rs528366 chr13:92381450
–92572381

224 T C 0.78 −0.030 0.005 2.30×10−8 GPC5

rs77578670 chr15:51607186
–51645049

23 C T 0.75 −0.028 0.005 4.60×10−8 CYP19A1, GLDN

FVC rs143944819 chr2:232797462
–233101499

185 A G 0.77 0.033 0.006 7.50×10−9 DIS3L2

rs6442039 chr3:46902129
–47410564

158 C G 0.52 −0.025 0.004 2.00×10−8 CCDC12, KIF9, KIF9-AS1, KLHL18, MYL3,
NBEAL2, NRADDP, PTH1R, SETD2

rs78732306 chr5:44048662
–44583962

177 T C 0.91 −0.068 0.008 5.10×10−17 FGF10, FGF10-AS1

rs28366282 chr6:32196697
–32713674

1767 C T 0.76 0.035 0.005 3.30×10−11 BTNL2, C6orf10, HCG23, HLA-DQA1, HLA-DQA2,
HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5,

HLA-DRB6
rs139447342 chr6:32396905

–32636434
661 C T 0.3 0.032 0.005 1.00×10−9 HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1,

HLA-DRB5, HLA-DRB6
rs6063386 chr20:36206453

–36273380
127 C T 0.33 0.030 0.005 5.00×10−10 LINC00489

FEV1/FVC rs186784089 chr5:174393318
–174393318

1 G A 0.99 0.120 0.022 4.70×10−8 FLJ16171

rs149101418 chr6:31944375
–32113312

17 T G 0.55 0.035 0.005 7.50×10−13 ATF6B,C4A, C4B, C4B_2, CYP21A1P, CYP21A2,
FKBPL, STK19, TNXA, TNXB

rs200214283 chr6:31976290
–32133380

4 C T 0.9 −0.045 0.008 1.50×10−8 ATF6B, C4A, C4B, C4B_2, CYP21A1P, CYP21A2,
EGFL8, FKBPL, LOC100507547, PPT2,

PPT2-EGFL8, PRRT1, STK19, TNXA, TNXB

SNP: single nucleotide polymorphism; N: number of variants meeting the criteria of p<1×10−5 and r2>0.2 within the clump region; A1: effect allele;
A2: noneffect allele; BETA: BOLT-LMM regression effect size.
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obesity traits. We replicated these Chinese findings in the UKB and also identified population-specific
genetic effects. We also found shared biological pathways between lung function and obesity traits, such as
cell proliferation, embryo, skeletal and tissue development, and regulation of gene expression.

In this study, we identified nine new loci for FEV1, six for FVC and three for FEV1/FVC. Of these, we
highlighted a novel gene associated with FEV1, GPC5 on 13q31.3. GPC5 is a member of the glypican
gene family. Evidence to date suggests that the main function of the glypicans is to regulate the signalling
pathway of bone morphogenetic proteins, Wnt, Hedgehog and fibroblast growth factors [41], which are
involved in modulation of lung function [42], pulmonary fibrogenesis [43] and COPD pathobiology [44].
GPC5 was also found to contribute to an increased risk of lung cancer in never-smokers [45]. For FVC,
we also found a novel independent region, 20q11.23, where the sentinel SNP is mapped to a lncRNA,
LINC00489, although the function of this region needs to be further investigated. For FEV1/FVC, we note
that several independent loci were within the 6p21 region, which was known for its association with lung
function traits (FEV1 and FEV1/FVC) and COPD [39, 40]. This region contains genes such as AGER,
ATF6B, NOTCH4 and TNXB, of which AGER has been reported to play a potential functional role in lung
function [46]. AGER protein, a receptor for advanced glycation end-products (RAGE), is a multiligand
receptor of the immunoglobulin superfamily and interacts with distinct molecules implicated in
homeostasis, development, inflammation, diabetes and neurodegeneration [46]. RAGE signals depend on
cell type and context. RAGE expression increases following cigarette smoke exposure and is partially
responsible for inducing the pro-inflammatory signalling pathways (e.g. NF-κB) [47]. In addition, we
noticed two novel loci (mapped genes DIS3L2 and FGF10/FGF10-AS1) that are significant in both FEV1

and FVC, indicating their pleotropic effect between different lung function traits.

Our LDSC analysis showed a strong genome-wide genetic correlation between lung function and obesity
traits in both Chinese and European populations. We observed a strong negative genetic correlation of
obesity traits with FEV1 and FVC in both populations, but a nonsignificant genetic correlation between
obesity traits and FEV1/FVC in the Chinese population. The genetic correlation results in the European
population were consistent with those from the Chinese population, except for BMI–FEV1/FVC, which
was also highly significant in the European population (Rg=0.15, p=7.92×10

−24). Previous studies showed
that FEV1 and FVC are reduced in the presence of obesity [48], but the FEV1/FVC ratio is usually
unaffected [49]. There are several biological mechanisms that could potentially explain how lung function
impairment and obesity are associated. First, the mechanical effects of obesity produce airway narrowing
and closure and increased respiratory system resistance. Compared with healthy weight individuals, airway
narrowing in obesity correlates with airway closure and airway hyperresponsiveness [50]. Airway
narrowing and closure lead to air trapping and ventilation inhomogeneity [51]. In addition, we found that
the genetic correlation is stronger between lung function and central obesity than with global obesity.
Compared with global obesity, which does not take account of fat distribution, abdominal and thoracic fat
are more likely to play a role in lung function impairment. This is because they have direct mechanical
effects on the diaphragm and chest wall expansion during forced inspiration [52, 53], a typical symptom of
restrictive lung disease [54].

Cross-trait meta-analysis identified significantly independent loci shared between lung function and obesity
traits. In the Chinese population, the locus DIS3L2 on 2q37.1 was found to be shared between multiple
lung function and obesity traits (BMI–FEV1, WCadjBMI–FEV1, BMI–FVC and WCadjBMI–FVC in the
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FIGURE 3 Genome-wide genetic correlation between three lung function traits and three obesity traits in the a) China Kadoorie Biobank (CKB) and
b) UK Biobank (UKB) cohorts. FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; BMI: body mass index; WHRadjBMI: BMI-adjusted
waist-to-hip ratio; WCadjBMI: BMI-adjusted waist circumference. The colour of each box scales with the magnitude of the genetic correlation (Rg).
*: pairs of traits with nominal significant genetic correlation (p<0.05); **: pairs of traits with significant genetic correlation after correcting for
multiple testing (p<0.05/9). Boxes without labelling are trait pairs with nonsignificant genetic correlation.
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TABLE 2 25 shared genetic loci between lung function (forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC)) and obesity (body mass index (BMI), BMI-adjusted waist-to-hip ratio
(WHRadjBMI) and BMI-adjusted waist circumference (WCadjBMI)) traits in the China Kadoorie Biobank

Trait pair Sentinel
SNP

Clump region N A1 A2 BETA1 P1 BETA2 P2 P Genes within clump region Overlap
with UKB#

FEV1 and BMI rs73995038 chr2:232797462
–233165478

193 A G −0.027 2.40×10−9 −0.024 1.30×10−7 1.15×10−15 DIS3L2 No

rs801170 chr5:139973696
–140230371

303 C T 0.023 3.70×10−7 0.022 7.20×10−7 9.11×10−13 CD14, DND1, HARS, HARS2, IK, MIR3655, NDUFA2,
PCDHA1, PCDHA2, PCDHA3, PCDHA4, PCDHA5,
PCDHA6, PCDHA7, PCDHA8, PCDHA9, TMCO6,

VTRNA1-1, VTRNA1-2, VTRNA1-3, WDR55, ZMAT2

No

rs9271730 chr6:32397794
–32667412

1728 G A 0.022 3.10×10−6 0.029 3.30×10−10 7.72×10−15 HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1,
HLA-DRB5, HLA-DRB6

No

rs11066001 chr12:111629389
–112119171

19 T C 0.024 7.60×10−6 0.028 3.40×10−7 1.99×10−11 ATXN2, BRAP, CUX2, FAM109A, MIR6760, SH2B3 No

rs144504271 chr12:112140669
–113117897

16 G A 0.028 1.00×10−6 0.029 3.20×10−7 1.88×10−12 ACAD10, ADAM1A, ALDH2, ERP29, HECTD4,
MAPKAPK5, MAPKAPK5-AS1, MIR6761, MIR6861,

NAA25, PTPN11, RPL6, TMEM116, TRAFD1

No

rs2078863 chr12:111846028
–112355472

137 T C 0.020 5.60×10−6 0.020 9.50×10−6 5.20×10−10 ACAD10, ADAM1A, ALDH2, ATXN2, BRAP, MAPKAPK5,
MAPKAPK5-AS1, MIR6761, SH2B3

No

rs5742653 chr12:102397730
–102910374

339 C T 0.021 4.50×10−6 0.022 1.10×10−6 2.03×10−11 CCDC53, IGF1, NUP37, PARPBP, PMCH No

FEV1 and
WHRadjBMI

rs11066325 chr12:112834586
–113150735

7 T C 0.036 2.00×10−9 0.031 2.30×10−7 5.44×10−16 PTPN11, RPL6 No

rs3809297 chr12:111293470
–111718231

88 G T 0.029 8.80×10−7 0.026 6.80×10−6 2.53×10−11 CCDC63, CUX2, LOC100131138, MYL2 No

rs4646776 chr12:111886967
–112678697

19 G C 0.037 5.60×10−11 0.029 2.20×10−7 1.51×10−17 ACAD10, ADAM1A, ALDH2, ATXN2, BRAP, ERP29,
HECTD4, MAPKAPK5, MAPKAPK5-AS1, MIR6761,
MIR6861, NAA25, SH2B3, TMEM116, TRAFD1

No

rs7175531 chr15:51415799
–51556959

49 T C 0.027 1.60×10−7 0.022 7.80×10−6 2.01×10−12 CYP19A1, MIR4713 No

rs6142351 chr20:33864484
–34336720

302 G A −0.032 5.20×10−11 −0.024 1.20×10−6 5.03×10−16 C20orf173, CEP250, CPNE1, EIF6, ERGIC3, FAM83C,
FAM83C-AS1, FER1L4, GDF5, MMP24, MMP24-AS1,
NFS1, RBM12, RBM39, ROMO1, SPAG4, UQCC1

Yes

FEV1 and
WCadjBMI

rs12048493 chr1:149922960
–149995265

4 A C −0.023 1.00×10−6 0.022 6.10×10−6 1.92×10−10 OTUD7B Yes

rs6604614 chr1:218568359
–218690948

71 C G −0.030 5.10×10−9 −0.027 1.90×10−7 1.06×10−16 TGFB2 Yes

rs16828537 chr2:232797462
–233211117

264 A G 0.033 3.90×10−13 −0.025 3.30×10−8 3.91×10−19 DIS3L2 No

rs11066065 chr12:111846028
–112824473

707 C G 0.025 2.20×10−8 0.024 1.20×10−7 1.92×10−16 ACAD10, ADAM1A, ALDH2, ATXN2, BRAP, ERP29,
HECTD4, MAPKAPK5, MAPKAPK5-AS1, MIR6761,
MIR6861, NAA25, SH2B3, TMEM116, TRAFD1

No

rs11066325 chr12:112834586
–113150735

7 T C 0.053 6.70×10−19 0.031 2.30×10−7 5.08×10−27 PTPN11, RPL6 No

rs4646776 chr12:111827203
–112678697

31 G C 0.055 4.90×10−23 0.029 2.20×10−7 7.56×10−31 ACAD10, ADAM1A, ALDH2, ATXN2, BRAP, ERP29,
HECTD4, MAPKAPK5, MAPKAPK5-AS1, MIR6761,
MIR6861, NAA25, SH2B3, TMEM116, TRAFD1

No

rs78572043 chr12:111293470
–111718231

94 A G 0.046 1.10×10−13 0.029 2.70×10−6 4.58×10−20 CCDC63, CUX2, LOC100131138, MYL2 No

Continued
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TABLE 2 Continued

Trait pair Sentinel
SNP

Clump region N A1 A2 BETA1 P1 BETA2 P2 P Genes within clump region Overlap
with UKB#

FVC and BMI rs6730783 chr2:219890663
–220051676

63 A G −0.023 2.00×10−7 −0.021 4.00×10−6 2.73×10−12 CCDC108, CNPPD1, FAM134A, IHH, MIR3131, NHEJ1,
SLC23A3

No

rs73995038 chr2:232797462
–233201328

207 A G −0.027 2.40×10−9 −0.024 7.10×10−8 4.13×10−16 DIS3L2 No

rs801170 chr5:139791506
–140230371

327 C T 0.023 3.70×10−7 0.022 1.30×10−6 8.74×10−13 ANKHD1, ANKHD1-EIF4EBP3, APBB3, CD14, DND1,
EIF4EBP3, HARS, HARS2, IK, MIR3655, MIR6831,
NDUFA2, PCDHA1, PCDHA2, PCDHA3, PCDHA4,
PCDHA5, PCDHA6, PCDHA7, PCDHA8, PCDHA9,
SLC35A4, SRA1, TMCO6, VTRNA1-1, VTRNA1-2,

VTRNA1-3, WDR55, ZMAT2

No

rs9271730 chr6:32397794
–32667412

2271 G A 0.022 3.10×10−6 0.028 1.30×10−9 2.21×10−14 HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1,
HLA-DRB5, HLA-DRB6

No

FVC and
WHRadjBMI

rs2425059 chr20:33847253
–34412049

326 T C 0.033 3.70×10−11 0.022 9.10×10−6 1.61×10−14 C20orf173, CEP250, CPNE1, EIF6, ERGIC3, FAM83C,
FAM83C-AS1, FER1L4, GDF5, MMP24, MMP24-AS1,

NFS1, PHF20, RBM12, RBM39, ROMO1, SPAG4, UQCC1

Yes

FVC and
WCadjBMI

rs16828537 chr2:232797462
–233211117

257 A G 0.033 3.90×10−13 −0.025 1.40×10−8 5.78×10−17 DIS3L2 Yes

SNP: single nucleotide polymorphism; N: number of variants meeting the criteria of p<1×10−5 and r2>0.2 within the clump region; A1: effect allele; A2: noneffect allele; BETA1: lung function trait
effect size; P1: lung function trait p-value; BETA2: obesity trait effect size; P2: obesity trait p-value; P: cross-trait meta-analysis p-value; UKB: UK Biobank. #: if the cross-trait meta-analysis clump
region is overlapped with the same trait pair results in the UKB.
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Chinese population; WC–FVC in the European population). A previous study found DIS3L2 to be a gene
that contributes to an overgrowth syndrome (e.g. Perlman syndrome [55]), suggesting its critical role in the
regulation of cell growth and division. Such a function is also consistent with the findings from the
pathway analysis, where the shared genes are mainly enriched in pathways related to cell proliferation and
embryo, skeletal and tissue development. Notably, these shared pathways show the important role of
growth for both lung function and obesity, and are partially distinct from the pathways identified in a
recent lung function GWAS study [14]. Unsurprisingly, we also found many loci in the HLA region that
were shared by obesity traits and lung function in both populations. HLA is a gene complex that contains
abundant pleiotropy for many complex diseases [6, 7, 9, 56] and is especially involved in immune-related
process [57]. In the European population, we also identified many shared loci between lung function and
obesity traits. However, we found that most of the shared loci were distinct between the two populations.

Although the relationship between lung function and obesity was established in epidemiological studies [5,
15, 31, 58], it remains unclear whether obesity is a driving component in lung function or a comorbidity of
its presence. The MR estimates in the current study suggested a negative causal effect of BMI to FEV1 and
FVC and a positive causal effect to FEV1/FVC. These estimates provide evidence that BMI might reduce
lung function in both East Asian and European populations, although the causal relationship between BMI
and FEV1/FVC can still be bidirectional. The results of causal association from BMI to lung function traits
are consistent with WIELSCHER et al. [59], showing negative causal associations of BMI with FEV1 and
FVC and a positive causal association of BMI with FEV1/FVC.

In this study, we found evidence of genetic heterogeneity in Chinese and European populations. At the
genome-wide level, the cross-population genetic correlation analysis showed that BMI had an estimated
cross-population Rg statistically significantly <1, indicating heterogeneity in genetic regulation of BMI
across Chinese and European populations. At the variant level, the cross-trait meta-analysis showed the
majority of the shared variants are different in Chinese and European populations, which could be due to
the distinct genetic background and sample size in the two populations, and also gene×environment
interaction [32].

Several recent lung function PRS studies have focused on the association between lung function PRS and
COPD risk, and interaction with smoking status [14, 60]. Our study investigated PRSlung function×BMI in
both cross-sectional and longitudinal settings. Our interaction analysis showed that maintaining a normal
BMI improved lung function and the beneficial effect is more profound in subjects with a high lung
function genetic profile. The results suggest that BMI might be a mediator of genetic effects on
lung function, which is consistent with the MR results showing that BMI is a causal risk factor of lung
function. We also observed the top PRS group showed the most beneficial effect by BMI change. These
findings have important implications for lung function improvement because they can provide potential
intervention on BMI to individuals at risk before lung function reduction based on more precise risk
stratification by using PRSs.

TABLE 3 Estimates of causal effect size for body mass index (BMI) and lung function traits (forced expiratory
volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC)

Population Trait 1 Trait 2 Direction Causal effect size# SE p-value nSNP

East Asian BMI FEV1 → −0.0773 0.021 2.46×10−4 68
← 0.0884 0.033 6.53×10−3 17

FVC → −0.1084 0.021 3.44×10−7 67
←¶ 6

FEV1/FVC → 0.0332 0.021 0.115732 69
←¶ 3

European BMI FEV1 → −0.1057 0.012 4.65×10−18 50
← 0.0250 0.012 0.0308 411

FVC → −0.1564 0.012 1.23×10−37 50
← −0.0180 0.013 0.154475 379

FEV1/FVC → 0.1622 0.014 8.01×10−33 48
← 0.0393 0.009 4.75×10−6 599

nSNP: number of single nucleotide polymorphisms in the instrumental variable; →: trait 1→trait 2 causal
direction; ←: trait 2→trait 1 causal direction. #: causal effect sizes are in units of per standard deviation
increase in exposure; ¶: the FVC and FEV1/FVC genome-wide association studies do not have enough SNPs at
the genome-wide significance level to construct the instrument variable.
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We also acknowledge the limitations in the current study. First, the CKB GWAS sample size is only a
quarter the size of the UKB’s. This leads to some findings that may not be directly comparable between
the two cohorts. Second, the FVC and FEV1/FVC measurements for the Haikou and Qingdao regions
(n=14000) have may be biased in comparison with the other eight regions in the CKB. Thus, we further
conducted the sensitivity analysis removing the two regions. The sensitivity analysis (supplementary
figures S5 and S6) showed the effect sizes of FVC and FEV1/FVC novel loci were highly consistent with
the primary analysis (using the full GWAS cohort), although the p-values modestly increased after
removing the two regions due to less power. In addition, the results of the sensitivity analysis for genetic
correlation are consistent with the primary analysis (supplementary table S24). The CKB FEV1/FVC PRS
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has also been used in a recent study and showed consistent results compared with other independent
ancestry groups [14]. Third, we chose to use the lung function spirometry measures with two time-points
in the UKB (data fields 3062 and 3063), thus the most cleaned lung function spirometry measures (data
fields 20150 and 20151) could not be used. However, we showed our GWAS results are consistent with
the results of the SHRINE et al. [14] study, which used the most cleaned lung function spirometry measures.
Fourth, although the use of PRSs allows researchers to effectively capture a useful fraction of genetic
effects, the PRSlung function×BMI analysis remains susceptible to confounding or bias due to LD between
SNP markers in the PRS model and the causal variants of BMI [61, 62]. However, our sensitivity analyses
showed that this potentially has little impact on the PRSlung function×BMI analyses and adjusting height is
not likely to introduce collider bias between the BMI and lung function association (supplementary tables
S25–S27). Finally, the LD patterns in the HLA region are highly complex and the signals we reported are
likely tagging the causal variants instead of actually being the causal variants due to the limitation of
imputation data. Sequencing data is recommended to identify causal variants in the HLA region.

In conclusion, the current study is the first large-scale GWAS analysis of lung function in the Chinese
population. Our study extends existing knowledge of the genetic landscape of lung function traits by
leveraging large-scale Chinese and European genetic cohorts. We applied single- and cross-trait analyses,
and identified novel loci for lung function traits in the Chinese population, shared genetic effects between
lung function and obesity traits, genetic heterogeneity in Chinese and European populations, and a
PRSlung function×BMI effect. These new findings provide greater knowledge of the genetic basis of lung
function in the Chinese population, and shared genetics between lung function and obesity, which will
foster subsequent translational, clinical and public health research.
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