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ABSTRACT
Background: Lung adenocarcinomas (LUADs) that display radiologically as subsolid nodules (SSNs)
exhibit more indolent biological behaviour than solid LUADs. SSNs, commonly encompassing pre-invasive
and invasive yet early-stage adenocarcinomas, can be categorised as pure ground-glass nodules and part-
solid nodules. The genomic characteristics of SSNs remain poorly understood.
Methods: We subjected 154 SSN samples from 120 treatment-naïve Chinese patients to whole-exome
sequencing. Clinical parameters and radiological features of these SSNs were collected. The genomic
landscape of SSNs and differences from that of advanced-stage LUADs were defined. In addition, we
investigated the intratumour heterogeneity and clonal relationship of multifocal SSNs and conducted
radiogenomic analysis to link imaging and molecular characteristics of SSNs. Fisher’s exact and Wilcoxon
rank sum tests were used in the statistical analysis.
Results: The median somatic mutation rate across the SSN cohort was 1.12 mutations per Mb. Mutations
in EGFR were the most prominent and significant variation, followed by those in RBM10, TP53, STK11
and KRAS. The differences between SSNs and advanced-stage LUADs at a genomic level were unravelled.
Branched evolution and remarkable genomic heterogeneity were demonstrated in SSNs. Although
multicentric origin was predominant, we also detected early metastatic events among multifocal SSNs.
Using radiogenomic analysis, we found that higher ratios of solid components in SSNs were accompanied
by significantly higher mutation frequencies in EGFR, TP53, RBM10 and ARID1B, suggesting that these
genes play roles in the progression of LUADs.
Conclusions: Our study provides the first comprehensive description of the mutational landscape and
radiogenomic mapping of SSNs.
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Introduction
Early-stage lung adenocarcinomas (LUADs) can present as a spectrum of radiological appearances,
ranging from pure ground-glass nodules (pGGNs) generally thought to be indolent, to more aggressive
solid LUADs. Radiological subsolid nodules (SSNs) can be further categorised as pGGNs, which are
defined as nodules manifesting as an area of hazy increased lung opacity with preservation of bronchial
and vascular margins, and part-solid nodules (PSNs) comprised of both ground-glass and solid
components [1]. A proportion of pGGNs eventually develop into PSNs. Pathologically, malignant SSNs
encompass pre-invasive lesions (atypical adenomatous hyperplasias and adenocarcinomas in situ),
minimally invasive adenocarcinomas and invasive adenocarcinomas.

To date, comprehensive studies describing the genomic landscape [2–5] and clonal architecture [6, 7] of
LUAD have focused mainly on relatively late-stage tumours. Genomic features of the very early stage of
LUAD [8], especially the subgroup that displays radiologically as SSNs [9], remain poorly understood.
Furthermore, the diverse clinical trajectories of pGGNs and PSNs pose significant management challenges,
and there have been limited predictive and prognostic biomarkers to risk-stratify patients. Radiological
features of SSNs, such as the subclassification (pGGN or PSN) [10], the solid size [11] and the
consolidation tumour ratio (CTR) [12], can serve as important clinical references for diagnosis and
treatment of this disease. However, the potential genomic grounds supporting the use of radiological
parameters as important clinical references for diagnosis and treatment of SSNs were not deciphered.

In this study, we performed whole-exome sequencing of 154 surgical SSN specimens from 120 patients. We
defined the genomic characteristics of SSNs and delineated potential driver somatic mutations underlying the
development and progression to advanced-stage LUAD. We also revealed the intratumour heterogeneity
between ground-glass and solid regions of the same SSN (n=11) and the clonal relationship among
multifocal SSNs from the same patient (n=26). Finally, we provided radiogenomic mapping of SSNs. Our
findings shed light on the evolution of LUAD and provide valuable biological and clinical insights into SSNs.

Methods
SSN cohort
Pathologically confirmed malignant tumour samples from 154 SSNs along with paired controls from 120
treatment-naïve Chinese patients were subjected to whole-exome sequencing. The study design is
summarised in figure 1a and b, and detailed clinical features of the cohort are summarised in table 1 and
supplementary table S1. Of note, 11 large PSN samples were divided into two to five regions for
whole-exome sequencing according to the gross appearance of the resected tumour and the radiological
characteristics (figure 1c, supplementary table S2). Pathological diagnoses were classified as atypical
adenomatous hyperplasia, adenocarcinoma in situ, minimally invasive adenocarcinoma or invasive
adenocarcinoma according to the 2015 World Health Organization classification system (figure 1d).

Radiological evaluation
The maximum diameters of whole SSNs and solid components on lung windows were measured (figure
2b). The CTR was calculated as the ratio of the maximum diameter of consolidation divided by the
tumour size. Volumetric parameters, such as solid volume percentage, were obtained semi-automatically
using the Lung VCAR workstation (GE Healthcare, Chicago, IL, USA). The SSN mass was calculated
using the following equation: mass=volume × ((mean CT attenuation + 1000) × 0.01). Image analysis
details are included in the supplementary material.

Whole-exome sequencing library preparation and data analysis
Protocols for genomic DNA extraction and whole-exome sequencing library preparation are detailed in the
supplementary material. We used the Genome Analysis Toolkit (GATK, version 3.8.0) to pre-process the
whole-exome sequencing data, and MuTect (version 1.1.4) and Strelka (version 2.8.4) to call single
nucleotide variants and insertions and deletions, respectively. Further details of bioinformatic analyses arre
provided in the supplementary material. We used Fisher’s exact test and Wilcoxon rank sum test for
statistical analysis.

Results
The mutational landscape of SSNs
The median (range) somatic mutation rate across the SSN cohort (n=154) was 1.12 (0.03–6.87) mutations
per Mb, which is significantly lower than that of Chinese advanced-stage LUADs [5] (supplementary
figure S1). The median sequencing depth per tumour was 217. The mutational landscape of SSNs is
summarised in figure 3a. 12 significant mutated genes were identified by the MutSigCV algorithm.
Notably, mutations in EGFR were the most prominent and significant variation (50%), followed by
mutations in RBM10 (16%), TP53 (13%), STK11 (8%) and KRAS (5%). Other frequent, but not
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significantly mutated genes included BIRC6 (5%), ARID1B (4%), CHD2 (4%), FBXO11 (4%) and GNAQ
(4%). Concurrent and mutually exclusive mutation patterns in SSNs are shown in figure 3d. Similar to
previous reports in LUADs [3, 5, 13], mutations in KRAS were mutually exclusive with those in EGFR.
Both RBM10 and TP53 mutations commonly co-occurred with EGFR mutations. Interestingly, TP53 was
found to be co-altered in only 19% (15 out of 77) of the EGFR mutant population, lower than the

FIGURE 1 Study overview and sample information for 154 subsolid nodules (SSNs). a) Schematic of the study design; b) detailed information about
the number of patients and samples assigned to different research strategies; c) schematic drawings of i) a pure ground-glass nodule and ii) a
part-solid nodule with corresponding computed tomography (CT) images under the lung window setting (red arrows indicate sites of SSNs);
d) histological features (haematoxylin and eosin staining) of SSNs including i) atypical adenomatous hyperplasia, ii) adenocarcinoma in situ,
iii) minimally invasive adenocarcinoma iv) and invasive adenocarcinoma. WES: whole-exome sequencing. Scale bar=100 μm.

TABLE 1 Clinical characteristics of 120 patients and 154 subsolid nodules (SSNs)

Age years 59 (29–82)
Sex
Female 68 (56.7)
Male 52 (43.3)

Smoking status
Smoker 32 (26.7)
Nonsmoker 88 (73.3)

Lesion maximum diameter mm
⩽10.0 41 (26.6)
10.1–20.0 68 (44.2)
>20.0 45 (29.2)

SSN type
pGGN 66 (42.9)
PSN 87 (56.5)
NA 1 (0.6)

Solid maximum diameter mm
⩽5 79 (51.3)
>5 74 (48.1)
NA 1 (0.6)

CTR
0–0.25 68 (44.2)
>0.25 85 (55.2)
NA 1 (0.6)

Solid volume percentage %
⩽50 120 (77.9)
>50 22 (14.3)
NA 12 (7.8)

SSN mass mg
⩽250 53 (34.4)
>250 89 (57.8)
NA 12 (7.8)

Histological type
AAH 14 (9.1)
AIS 19 (12.3)
MIA 30 (19.5)
IAC 91 (59.1)

Tumour stage#

NA (AAH) 14 (9.1)
0 19 (12.3)
IA1 74 (48.1)
IA2 33 (21.4)
IA3 3 (1.9)
IB 8 (5.2)
IIA 1 (0.6)
IIB 2 (1.3)

Data are presented as median (range) or n (%). pGGN: pure ground glass nodule; PSN: part-solid nodule;
NA: not applicable; CTR: consolidation tumour ratio; AAH: atypical adenomatous hyperplasia; AIS:
adenocarcinoma in situ; MIA: minimally invasive adenocarcinoma; IAC: invasive adenocarcinoma.
#: according to the International Union Against Cancer eighth tumour, node, metastasis staging.
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anticipated 50–60% in early-stage solid tumours or metastatic disease [5, 14], suggesting that these
combinations may facilitate the transformation of early stage lung neoplasm to malignancy [15].

We further explored the aetiological factors that underlie mutagenesis in Chinese SSNs. Mutational
spectrum analysis revealed a strong enrichment of C>T transversions and C>A transitions, which are
associated with a history of smoking (figure 3b). From 154 SSNs, we confidently identified three
mutational signatures, which displayed high similarity to COSMIC signatures 4, 6 and 5 (figure 3c) [16].
COSMIC signature 4 is associated with smoking and has been frequently reported in LUADs [4, 5].
Intriguingly, COSMIC signature 6, which is often identified in colorectal cancers but less in LUADs [2], is
characteristic of tumours with defective DNA mismatch repair. These results suggested that smoking and
dysregulation of DNA repair contribute to SSN tumourigenesis.
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FIGURE 2 Clinical enrichment analysis of mutated genes by different clinical criterion groups. a) Both barplots, which indicate the mutation
frequencies of significantly mutated genes as well as additional non-significantly enriched genes (for all genes with mutation frequencies >3%),
and violin plots, which show the somatic mutation number, demonstrate the comparisons between sample groups classified by i) sex, ii) smoking
condition with a cut-off of 20 pack-years, iii) pathology, iv) radiological subsolid nodule (SSN) classification (pure ground-glass nodule (pGGN) or
part-solid nodule (PSN)), v) total size with a cut-off of 20 mm, vi) solid component size with a cut-off of 5 mm, vii) consolidation tumour ratio (CTR)
with a cut-off of 0.25, vii) solid volume percentage with a cut-off of 50% and viii) SSN mass with a cut-off of 250 mg. AAH: atypical adenomatous
hyperplasia; AIS: adenocarcinoma in situ; MIA: minimally invasive adenocarcinoma; IAC: invasive adenocarcinoma. For the barplots, significance
was calculated by Fisher’s exact test; for the violin plots, the p-value was calculated by Wilcoxon rank sum test. *: p<0.05, **: p<0.01,
***: p<0.001. b) Schematic diagrams and formulas for calculation of several of the clinical criteria mentioned in (a).
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Comparing the genomic features of SSNs to advanced-stage LUADs
To unravel the differences between SSNs and advanced-stage LUADs at a genomic level, we compared the
mutation frequencies of driver genes in 10 oncogenic pathways [17] and other previously reported
mutations related to LUAD [3, 5]. The mutation frequencies of these genes in advanced-stage LUADs
were calculated by reanalysing data from the Cancer Genome Atlas (106 samples of stage II–IV LUADs
[3]) and published Chinese LUADs (75 samples of stage II–IV LUADs [5]) (figure 3e, supplementary
figure S2).

First, we compared the mutation frequencies of oncogenic pathways in SSNs and stage II–IV LUADs and
found the differences between the three groups (supplementary table S3). Next, we examined the
frequencies of driver mutations in SSNs and Chinese stage II–IV LUADs (figure 3e, supplementary figure
S2). The smoking status of these two cohorts were similar (73.3% nonsmokers in Chinese SSNs and 61.3%
in Chinese stage II–IV LUADs). Of note, EGFR (50.0% versus 30.7%) and RBM10 (16.2% versus 1.3%)
mutations exhibited significantly higher frequencies in SSNs. Of all the 83 EGFR mutations from 77 SSNs,
60% (50 out of 83) were L858R, and 20% (17 out of 83) were exon 19 deletions, while the remainder (16
out of 83) were other rare mutations (T790M, L858M, L861Q, L833F, and so on) (supplementary figure
S3). This was consistent with a previous study which reported that EGFR mutations were found in 64% of
Japanese SSNs [9]. Interestingly, RBM10 exhibited a significantly higher mutation frequency in SSNs with
specific mutational types (nonsense, frameshift and splice site) (supplementary figure S3) [4] when
compared to Chinese advanced-stage LUADs. RBM10, which encodes an RNA-binding protein, was found
to be frequently mutated (7%) in Caucasian LUADs [4] and highly mutated in pre-invasive and
early-stage LUADs [18]. We speculated that alterations in RNA splicing alterations are a hallmark of SSNs,
but do not confer a sustained evolutionary advantage during progression to advanced stage
adenocarcinoma.

A number of genes displayed notably lower mutation frequencies in SSNs when compared with Chinese
stage II–IV LUADs (figure 3e). These included tumour suppressor genes in key oncogenic pathways,
including TP53, APC, FAT1/2/3/4, CRB1/2, NOTCH1/2/3/4, SPEN and ARID1A and oncogenes including
KRAS, ERBB4, ROS1, PIK3CA/B, TEAD1/2 and NFE2L2, as well as genes associated with cytoskeleton
remodelling including PHPN2 and TRIO. Above all, we speculated that EGFR and RBM10 mutations are
critical for SSN tumourigenesis, but progression of SSNs to advanced-stage LUADs is driven by mutations
in other important cancer-related genes.

Genomic profile of intrapatient multifocal SSNs
Multiple synchronous occurrence is a feature of SSNs. To explore the clonal relationship between
multifocal SSNs and solid tumours from the same patient, we sequenced 66 samples from 26 patients (two
to five per patient). The interlesional genomic profile (the median sequencing depth of these regions was
186.9) was distinct in 23 out of 26 patients and generally confirmed the multicentric origin of SSNs
(supplementary figure S4).

However, of note, P119 with four pGGNs (T1, T3–T5) and one PSN (T2) was found to have a metastatic
event (between T4 and T5). P119-T4 and P119-T5, both of which were located in the apical-posterior
segment of left upper lobe and histologically presented as minimally invasive adenocarcinomas, were
demonstrated to share 10 nonsynonymous and eight synonymous mutations (figure 4a). The potential
driver MLLT1 mutation was shared by these two pGGNs, while EGFR(L858R), TP53 and PASK mutations
were exclusive to P119-T4. Taken together, multicentric tumours and intrapulmonary metastatic lesions
with a common clonal origin co-existed in this patient, which can be visualised in the regional distribution
of mutations and phylogenetic tree.

We identified three PSNs (T1–T3) and one solid nodule (T4) of P114 that originated from the same clonal
origin (figure 4b). P114-T1 showed predominant solid features by computed tomography scan (CTR 0.87,
solid volume percentage 68%), mainly acinar in pathology. P114-T2 (CTR 0.39, solid volume percentage
30%) and P114-T3 (CTR 0.66, solid volume percentage 41%) were ground-glass-predominant lesions with
adenocarcinoma in situ and mainly acinar in their pathology, respectively. P114-T1 was very large and
therefore underwent multiregion sequencing (R1–R5). The phylogenetic tree of this patient revealed that
P114-T1-R1∼R5, P114-T2, P114-T3, and P114-T4 all shared a substantial amount of mutations.
Interestingly, P114-T1 displayed remarkable regional heterogeneity and the most central part (R5) of
P114-T1 was the nearest to the putative metastases (P114-T2, P114-T3 and P114-T4) in evolutionary
distance, suggesting that metastatic lesions of SSNs can either stay as SSNs or progress to solid tumours.

Intratumour heterogeneity between the ground-glass and solid components of SSNs
To investigate the evolution and intratumour heterogeneity of SSNs, we performed multiregion sequencing
on 35 spatially separate regions sampled from 11 large SSNs. The regional mutation distributions and
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phylogenetic trees of P118, P117 and P116 are shown in figure 4c, d and e, respectively (results for the
remaining eight patients are included in supplementary figure S5). Branched evolution was evident in
SSNs, with potential driver mutations presenting both on the trunks and branches in the phylogenetic
trees (figure 4c, d and e). This demonstrated that genomic heterogeneity and branched evolution are
salient features of LUADs, even in their early stages when they radiologically display as SSNs.

Next, we focused on the difference between the ground-glass and solid components of PSNs in the hopes
of uncovering genomic factors that shape the distinct radiological phenotypes within the same lesion.
Interestingly, we found that solid components had comparable or even fewer somatic mutation numbers
than the ground-glass components, and no significant enrichment of specific mutations was identified in
ground-glass or solid components. The evolutionary distance between regions of the same radiological
phenotype varied among patients, as demonstrated in the phylogenetic trees (figure 4b, c, d and e). For
example, R4 and R5 sampled from the solid component of P114-T1 were remarkably heterogeneous. The
same result was observed among R1, R2 and R3, which were sampled from the ground-glass component
of P114-T1 (figure 4b). In contrast, R2 and R3 from the ground-glass component of P117-T displayed
high genomic similarity, whereas R1, R4 and R5 from the solid component grouped together on the
phylogenetic tree (figure 4d), consistent with their separation in the radiological phenotype. In this regard,
mutational features are not deterministically correlated with radiological features of different regions in the
same SSN.

Radiogenomic analysis links imaging and molecular characteristics of SSNs
Radiological features of SSNs can serve as important clinical references for diagnosis and treatment. Given
the clinical significance of these radiological parameters of SSNs, we investigated the differences in the
number of somatic mutations and patterns of mutated genes (for all genes with mutation frequencies
>3%) between any two groups separated by thresholds of each parameter with relevant clinical
implications.

The mutation patterns were first correlated with some basic clinical features such as sex, smoking
condition and pathology (figure 2a(i, ii and iii), respectively). Driver mutations of SSNs, including EGFR,
RBM10, TP53 and STK11 displayed roughly the same mutation frequencies between sexes, an observation
which differed from previous studies [3, 5]. KRAS mutations were more commonly observed in males,
although the difference was not statistically significant. In addition, we found that KTRAP1-3 mutations
were significantly enriched in males, although FLG mutations were enriched in female patients (p<0.05,
Fisher’s exact test). Compared with nonsmokers and light smokers (<20 pack-years), medium–heavy
smokers (⩾20 pack-years) had significantly greater numbers of KRAS, KTRAP1-3 and ARID1B mutations
(p<0.01 or p<0.001, Fisher’s exact test) along with a higher somatic mutation burden (p=0.01, Wilcoxon
rank sum test). When considering the pathological characteristics of the SSNs (supplementary table S4),
the mutation frequencies of EGFR, RBM10, TP53, ARID1B and FBXO11 were significantly greater in SSNs
that pathologically presented as invasive adenocarcinoma compared to those that presented as atypical
adenomatous hyperplasia, adenocarcinoma in situ and minimally invasive adenocarcinoma (p<0.05,
Fisher’s exact test). In addition, we found that invasive adenocarcinoma SSNs possessed a much higher
somatic mutation load (p<0.001, Wilcoxon rank sum test).

We next investigated the relationship between the radiological predictors of invasiveness and the genomic
profiles of SSNs. Similar to the results found for pathology, PSNs in our cohort were enriched for EGFR,
RBM10, TP53 and ARID1B mutations (p<0.05, Fisher’s exact test) and displayed significantly higher
numbers of somatic mutations (p<0.001, Wilcoxon rank sum test) than did pGGNs (figure 2a(iv)). We
then compared the patterns of mutation of the subgroups separated by total size and solid size (figure 2a(v
and vi)). Only mutation in EGFR was significantly enriched in SSNs with a total size >20 mm when
compared to smaller SSNs (p<0.05, Fisher’s exact test). However, when considering the size of the solid

FIGURE 3 The mutational landscape and signatures of Chinese subsolid nodules (SSNs). a) Mutational landscape of nonsynonymous somatic
mutations, including single nucleotide variants and insertions (ins) and deletions (del). Samples displayed as columns are ordered by the number
of nonsynonymous somatic mutations, as shown in the upper panel. Clinical features are annotated in the middle panel. The heatmap below
displays the somatic mutated genes ordered by their respective mutation frequencies. TNM: tumour, node, metastasis; pGGN: pure ground-glass
nodule; PSN: part-solid nodule; AAH: atypical adenomatous hyperplasia; AIS: adenocarcinoma in situ; MIA: minimally invasive adenocarcinoma;
IAC: invasive adenocarcinoma. #: 12 significant genes with a corrected q-value <0.1 were identified by the MutSigCV algorithm. b) “Lego” plots
displaying the frequency of base substitutions within specific trinucleotide mutational contexts. c) Mutational signatures of Chinese SSNs.
d) Concurrent and mutually exclusive somatic mutation patterns of significantly mutated genes. Significance was calculated using Fisher’s exact
test. e) Comparison of the mutation frequencies of important genes in cancer-associated pathways between Chinese SSNs and Chinese
advanced-stage lung adenocardinomas (LUADS; stage II–IV) [5]. Oncogenes labelled in red and tumour suppressor genes labelled in blue are
listed on the horizontal axis ordered by the corresponding pathways. The vertical axis represents the mutation frequencies obtained from different
cohorts. Significance was calculated using Fisher’s exact test. *: p<0.05, **: p<0.01, ***: p<0.001.
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component, in addition to EGFR, TP53 was also significantly enriched in SSNs with a solid size >5 mm
(p<0.01, Fisher’s exact test). This finding underscored the importance of mutation of TP53 in driving the
growth of the invasive tumour component (solid size) rather than the total SSN growth (total size). In
contrast, mutation in EGFR may play an important role in both SSN growth and SSN invasiveness. Both
groups (total size >20 mm and solid size >5 mm) exhibited much higher somatic mutation burdens than
other groups (p<0.01, Wilcoxon rank sum test) (figure 2a(v and vi)).

The CTR, solid volume percentage and SSN mass are additional predictive radiological parameters that are
used to evaluate the tumour solid components (figure 2a(vii, viii and ix)). We found that the number of
somatic mutations was significantly higher in groups with a CTR >0.25, a solid volume percentage >50%
and an SSN mass >250 mg, which suggested that increased solid component in SSNs is correlated with
increased mutation events. EGFR, RBM10 and TP53 mutations were significantly enriched in SSNs with a
CTR ⩾0.25 (p<0.01, Fisher’s exact test). Similar enrichments were found when comparing subgroups
classified by solid volume percentage and mass, although without statistical significance. However, these two
classification groups both displayed a higher frequency of ARID1B mutations (p<0.01, Fisher’s exact test).

Discussion
In this study, we provided a comprehensive genomic landscape of Chinese SSNs. We highlighted that
mutations in genes including EGFR, RBM10, TP53, STK11, BIRC6 and KRAS play important roles in
driving SSN tumourigenesis and discovered mutational signatures associated with smoking and defective
DNA mismatch repair, the latter of which is often identified in colorectal cancer [16], but is rare in
LUADs [19]. Consistent with this observation, genes associated with DNA repair, such as ATM [20],
ASXL1 [21], ATRX [22] and ARID1B [23], were also mutated in SSNs as well as most early lesions of
LUADs [15]. By comparing the genomic features of SSNs to those of advanced-stage LUADs, we were able
to delineate the potential order of driver mutations during the progression of SSNs to invasive LUADs.
These findings may explain why SSNs are able to remain indolent for many years.

Our study confirmed that most multifocal SSNs are tumours of multiple synchronous occurrence.
However, we identified two cases with metastatic multifocal SSNs. Together with the two cases we
reported previously [24], we found that SSNs can disseminate metastatic lesions while the metastatic
lesions can remain as SSNs. The exact metastatic routes remain unknown, but are possibly through
haematogenous, lymphatic or airway metastasis. We demonstrated that genomic heterogeneity and
branched evolution are present even in the early stages of LUADs, as shown in a recent study [25],
highlighting the complex evolutionary history of lung cancers and the therapeutic challenges we face.

It is widely accepted that radiological features of SSNs can serve as important clinical parameters for the
diagnosis and treatment of SSNs. The total size and solid size of SSNs can predict their clinical behaviours.
A more aggressive surveillance strategy should be applied to patients with pGGNs with a total size
>20 mm [26]. CTR, which takes both total size and solid size into account, also plays a critical role in the
evaluation and treatment of SSNs [27]. Meanwhile, tumour volume and mass are novel indexes that reflect
the invasiveness of SSNs [28]. Using radiogenomic analysis, we revealed the potential genomic grounds
supporting the use of these parameters as important clinical references for diagnosis and treatment of
SSNs. To summarise, when considering the total size of SSNs, only mutation in EGFR was remarkably
different between subgroups stratified by this parameter. However, when we took the presence (pGGN or
PSN), the size (solid size), and the weight (CTR, solid volume percentage, mass) of solid components into
consideration, we found that more solid components were accompanied by significantly higher mutation
frequencies in EGFR, TP53, RBM10 and ARID1B. We revealed that the formation of the solid components
of SSNs is potentially driven by additional mutations in cancer-related genes. Together with the
relationship between pathological characteristics and genomic profiles of SSNs, higher mutation
frequencies in EGFR, TP53, RBM10 and ARID1B were proven to relate to a more invasive behaviour
radiologically and pathologically.
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