
Differential diagnosis between newly
diagnosed asthma and COPD using
exhaled breath condensate
metabolomics: a pilot study

To the Editor:

Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous diseases with high
pathological burden and healthcare costs [1–3]. In outpatient clinical practice, an accurate differential
diagnosis is often very difficult, particularly in adult smokers, requiring specific lung function tests [4, 5].
Since nuclear magnetic resonance (NMR)-based metabolomics of exhaled breath condensate (EBC)
discriminates adults with COPD [6–8] or asthma [9] from healthy subjects, we hypothesised that it is also
able to differentiate asthma and COPD patients of different severities.

After approval by the Maugeri ethics committee, we recruited prospectively patients with a new diagnosis of
asthma (n=31) and COPD (n=44) according to current Global Initiative for Asthma and Global Initiative
for Chronic Obstructive Lung Disease guidelines. Six patients with asthma and nine COPD patients were
excluded because of relevant comorbidities that could potentially affect the analysis (nine for the presence
of coronary or valvular heart disease, five for the presence of diabetes mellitus, one for hypothyroidism).
In addition, the EBC samples obtained from five asthma and three COPD subjects were technically
unsuitable for NMR analysis. The final 20 asthma and 32 COPD subjects were used to build the reference
statistical model (table 1). Since no a priori analysis was possible, we could only evaluate the adequacy of
our sample size a posteriori, estimating a sample size of 17±3 asthma and 23±3 COPD patients. A second
cohort was also enrolled for an external blind validation comprising 13 asthma and 20 COPD patients.

EBC collection was achieved with a TURBO-DECCS condenser (Medivac, Pilastrello, Italy) as reported
[10]. NMR spectra were recorded at 27°C in a randomised sequential order on a 600-MHz Bruker
Avance-III spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped with a CryoProbe
using standard experiments. Metabolites were identified by resorting to two-dimensional experiments.
Within-day, between-day, and technical repeatability, and detection limit were assessed as reported [7, 9].

Proton NMR spectra were automatically data reduced to 390 integral segments (“buckets”), each of
0.02 ppm, using the Bruker AMIX 3.6 software package. Unsupervised principal component analysis
(PCA) was first applied. However, to better identify clustering, we used orthogonal projections to latent
structures discriminant analysis (OPLS-DA), and the obtained model showed improved predictive and
interpretive abilities, and in a permutation test (n=300) revealed no overfit. The model quality was
evaluated via the goodness-of-fit (R2) and the goodness-of-prediction (Q2) parameters [11]. Metabolite
quantification was obtained using the corresponding normalised buckets. Metabolite statistical significance
was determined by parametric (t-test) or non-parametric (Mann−Whitney U-test) tests according to the
results of a normality test performed to evaluate each distribution (Shapiro−Wilk, Kolgomorov−Smirnov
test). p-values <0.05 were considered as statistically significant.

All EBC classes were homogeneous, as PCA did not detect any subgroup related to the clinical
characteristics reported in table 1. OPLS-DA analysis of EBC profiles differentiated asthma and COPD
with strong regression (95%, p<0.0013; figure 1a) and high-quality parameters (R2=0.86 and Q2=0.86).
COPD patients, compared with asthma patients, show an increase in ethanol (mean±SD 25.56±4.57 μM
versus 12.15±3.12 μM; p=0.0119) and methanol (10.67±2.99 μM versus 5.01±2.02 μM; p=0.049), and
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significantly lower levels of formate (2.63±0.97 μM versus 6.97±1.12 μM; p=0.009) and acetone/acetoin
(5.84±1.49 μM versus 12.53±3.01 μM; p=0.0004). The area under the curve (AUC) of the receiver
operating characteristic (ROC) curve yielded a value of 0.99 for the model of figure 1a.

The relevance of the model was evaluated using a separate cohort (13 asthma and 20 COPD patients, table 1),
which was tested blindly. Its projection on the above statistical model generated the scores of figure 1b.
The OPLS-DA classifications shows a strong regression (95%, p<0.0011) and high-quality parameters
(R2=0.89 and Q2=0.87), therefore confirming that the model obtained from the training set is actually
valid. It correctly identified 12 of 13 asthma patients (92.3% accuracy) and 19 of 20 COPD subjects (95.0%
accuracy, 5.0% false-positive results), showing a sensitivity (true positive rate) of 92.3%, and a specificity
(true negative rate) of 95.0%. The positive predictive value (probability that the disease is present when the
test is positive) is 92.3%, and the negative predictive value (probability that the disease is not present when
the test is negative) is 95.0%. The discriminating metabolites were confirmed to be in COPD increased
ethanol (26.31±5.01 μM versus 11.38±3.98 μM; p=0.0101) and methanol (11.43±3.34 μM versus
4.82±1.79 μM; p=0.039), and decreased formate (2.97±0.69 M versus 7.45±1.99 μM; p=0.003) and acetone/
acetoin (6.04±1.89 μM versus 14.11±3.87 μM; p=0.0009). The AUC of the ROC for the total model of
figure 1b was 0.96.

TABLE 1 Clinical characteristics of the subjects recruited to the study#

Asthma COPD p-value Asthma validation set COPD validation set p-value

Anthropometric data
Subjects 20 32 13 20
Age¶ years 41.8±6.7 55.8±6.2 <0.001 42.0±6.7 53.8±6.6 <0.001
Sex (females/males) 11/9 10/22 0.40 7/6 4/10 0.80
BMI+ kg·m−2 22.7±2.9 24.4±6.1 0.25 23.3±3.8 25.1±5.3 0.30
Current smokers 5 7 0.90 3 8 0.70
Never smokers 7 0 0.008 5 0 0.04
Former smokers 8 25 0.26 5 16 0.40
Time of quitting years 3.5±2.2 2.5±1.2 0.04 2.8±1.2 2.1±1.1 0.53
Smoking history pack-years 19.5±2.1 39.0±15.1 <0.001 14.1±1.9 37± 12 <0.001

Lung function
Pre-BD FEV1 % pred 77.3±13.8 69.8±7.0 0.027 76.1±10.1 69.2±7.3 0.027
Pre-BD FVC % pred 91.2±9.9 85.1±9.0 0.015 90.1±9.8 88.6±9.0 0.54
Post-BD FEV1 % pred 87.7±9.8 71.3±7.7 <0.001 89.1±8.2 72.2±7.8 <0.001
Post-BD FVC % pred 96.2±10.9 87.4±8.1 0.002 97.1±7.8 90.0±7.2 0.01
Pre-BD FEV1/FVC ratio 0.69±0.07 0.65±0.04 <0.001 0.70±0.06 0.64±0.04 <0.001
Post-BD FEV1/FVC ratio 0.65±0.04 0.65±0.04
Methacholine μg 125±26; n=7 149±40; n=4

Atopy
Yes/no 16/4 4/28 0.004 10/3 3/21 0.04

Treatment ongoing
No treatment 7 4 5 2
Short acting β2-agonist 11 13 5 10
Long-acting β2-agonists 2 7 3 7
Long-acting antimuscarinic antagonist 0 8 0 5
Antihypertensive drugs 8 21 3 17
Statins 1 5 1 8

Data are expressed as n or mean±SD after assessing for normality with the D’Agostino-Pearson omnibus normality test, unless otherwise
stated. Normally distributed values were compared by using the unpaired t-test. If the normality test failed, the Wilcoxon−Mann−Whitney test
was used. Group differences were explored by means of 1-way ANOVA, followed by post hoc multiple comparisons according to the Tukey test.
Intraclass correlation analysis was performed for each group to estimate the reliability of single measurements. Chi square was used for
comparing proportions. Statistical significance was defined as p<0.05. #: diagnosis was achieved according to current Global Initiative for
Asthma (ginasthma.org) and Global Initiative for Chronic Obstructive Lung Disease (goldcopd.org) guidelines. All chronic obstructive pulmonary
disease (COPD) and asthma patients were clinically stable. Former smokers had stopped smoking for at least one year. None of the patients
was on regular systemic or inhaled corticosteroid, theophylline, antibiotics, antioxidants or mucolytic treatment. Asthma therapies remained
unchanged for 3 months before the study. The study excluded all subjects with a respiratory infection within the previous 3 weeks, chronic
heart diseases, diabetes mellitus, hypo/hyperthyroidism, the presence of mental or physical disability precluding informed consent or
compliance with the protocol, and pregnancy. The final cohorts included 20 asthmatic and 32 COPD patients, which were used to build the
model, and 13 asthmatic and 20 COPD patients for the external blind validation. ¶: age range: asthma, 35–54 years; COPD, 44–67 years. Validation
set: asthma, 34–55 years; COPD, 45–68 years. +: body mass index (BMI) range: asthma, 18.2–24.8 kg·m−2; COPD, 20.3–26.4 kg·m−2. Validation set:
asthma, 17.0–25.2 kg·m−2; COPD, 19.3–26.1 kg·m−2. BD: bronchodilator; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity.
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Methanol is metabolised to formaldehyde, which shows a pro-inflammatory action in cells and animal
models. Interestingly, methanol concentration increases in lung cancer patients, and notably COPD is
characterised by an increased risk of lung carcinoma [12]. Asthma, instead, presents a weaker risk of lung
cancer in nonsmokers, and shows high levels of formate. This may be related to the in vitro
antiproliferative effect on lung cancer cell lines of formate [13], which, on the contrary, decreases in the
sputum of lung cancer patients [14].

Low acetone was observed in the EBC of stable COPD patients compared to healthy nonsmoking and
former-smoker subjects with normal lung function [7]; on the contrary, increased level was reported in the
exhaled breath of stable COPD patients compared to nonsmoking and smoking subjects with normal lung
function [15]. These contrasting results may simply reflect the different sampling techniques. Ethanol and
its metabolites are involved in the pathogenesis and progression of COPD [16]. In addition, the main
metabolite of ethanol, acetaldehyde, may contribute to the increased risk of lung cancer in COPD [12].

The source of acetoin in our asthma or COPD patients is unknown. It may be the product of the
detoxication process of acetaldehyde [17], but may also be a bacterial product produced by both
pathogenic and non-pathogenic bacteria [18].

This is the first report demonstrating that the NMR metabolic profiling of EBC can be used to
discriminate asthma patients from COPD patients, even in smoking adults, in excellent agreement with the
use of an electronic nose [19] or urine metabolomics [20]. Furthermore, the EBC metabolic phenotype
(“metabotype”) differentiates asthma and COPD better than, for example, a panel of sputum cytokines
[21]. The fact that, in our validation cohort, the model correctly attributed both smoking and nonsmoking
asthma patients to the “asthma area” (figure 1b), implies that smoking is not the major factor in the
metabolomics differentiation of asthma and COPD. In addition, as clinically expected, significantly more
atopic subjects are present in the asthma group. However, the possibility that changes in the NMR
profiling of asthma EBC may simply be a fingerprinting of atopy was excluded because of the absence of a
related subgroup in the found models.

A potential strength of our study is the use of a validation cohort, since the external validation is the only
discriminatory evidence that a calculated model can be clinically valuable, regardless of the reported
predictive indices. Additionally, several measures were taken for quality control of the data. For EBC
collection we minimised the external influence and contamination, and good within-day, between-day, and
technical repeatability were observed. Moreover, no influence of demographic parameters was observed.
All patients were well characterised according to current international guidelines, and the differences
between the groups with respect to age and lung function parameters reflect those expected from the
clinical characteristics of asthma and COPD.
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FIGURE 1 Orthogonal projections to latent structures discriminant analysis (OPLS-DA) of exhaled breath condensate (EBC) samples. a) Score plot
showing the degree of separation of the model between asthmatic (blue circles) and chronic obstructive pulmonary disease (COPD) (red circles)
patients (the training set). The model presents strong regression (95%, p<0.0013) and high-quality parameters (R2=0.86 and Q2=0.86). b) Predicted
scores plot representing classification of the validation cohort obtained by projecting validation samples onto the model assessed by the training
set. Circles represent the training set samples (asthma, blue circles; COPD, red circles), while squares refer to the validation set samples. The
OPLS-DA classifications of both sets presents a strong regression (95%, p<0.0011), with high-quality parameters (R2=0.89 and Q2=0.87). In both
plots, the labels t[1] and t[2] along the axes represent the scores (the first two partial least-squares components) of the model, which are
sufficient to build a satisfactory classification. The models were obtained by applying statistical analysis to nuclear magnetic resonance (NMR)
spectra of EBC. Proton spectra were automatically data reduced to integrated regions (“buckets”) of 0.02-ppm width (the ppm identifies the
position of the NMR line in a spectrum with respect to a reference) using AMIX 3.6 software package. The bucketing data were imported into
SIMCA-P+14 package, and principal components analysis and OPLS-DA were performed.
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Our study, however, also presents some limitations. First, although the number of samples used is larger
than that suggested by backward analysis, the sample size was relatively small. Nevertheless, we were able
to distinguish COPD and asthma, identifying subtle differences in the metabolomic pattern.

Second, our cohort is not representative of the whole spectrum of asthma and COPD patients observed in
clinical practice. We need to investigate older patients, those with more history of smoking and those with
more severe asthma. Likewise, the potential influences of specific drugs (glucocorticoids, theophylline,
antileukotrienes, oxygen, antioxidants and antibiotics) on the discriminating power of this approach
should also be evaluated. The metabotype potential changes during uncontrolled asthma and symptomatic
COPD, and during asthma and COPD exacerbations of different severities should similarly be considered.

Third, future studies should include other control groups such as smokers with normal lung function and
patients with bronchiectasis of different aetiologies. We also recognise that a single biological fluid, as the
EBC, may not represent the complexity of the metabolic pathways involved in the pathogenesis of these
diseases [22].

For all these reasons, we are currently undertaking a comparative study on the metabolic profile of
multiple biological fluids (serum, urine, EBC and saliva) obtained from a larger population of COPD and
asthma patients, and incorporating the above-mentioned control groups. Notwithstanding the described
limitations, we have shown that NMR profiling of EBC discriminates asthma and COPD patients with
high sensitivity and specificity, and this may help the clinicians to decrease the number of incorrect
diagnosis.
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