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Quadriceps muscle fibre dysfunction in
patients with pulmonary arterial
hypertension

To the Editor:

Despite improvements in disease targeted therapies, pulmonary arterial hypertension (PAH) is a
progressive disease and PAH patients remain symptomatic [1]. Exercise intolerance is one of the main
symptoms, which limit PAH patients in their daily life activities. Reduced exercise capacity is generally
attributed to right ventricular dysfunction [1]. However, as with other cardiac and pulmonary diseases,
PAH patients develop respiratory [2] and peripheral muscle [3, 4] weakness, which might also contribute
to exercise intolerance. Indeed, exercise training improves exercise capacity in PAH patients and maximal
oxygen consumption of PAH patients correlates with the functional decline of peripheral muscle strength
[5, 6]. The underlying cause of the reduction in muscle strength is unclear. Some studies have reported
muscle fibre atrophy and a shift towards more fast-twitch fatigable fibres in skeletal muscles of PAH
patients [3, 7]; however, these are not consistent findings [4, 8].

Recently, we have shown that weakness of the respiratory muscles in PAH patients [8] and in pulmonary
hypertension rats [9] is, at least partly, caused by impaired contractility of the sarcomeres, the smallest
contractile units in muscle. Whether sarcomere contractility is also affected in peripheral muscles of PAH
patients is yet unknown. Physical activity declines in PAH patients and muscle disuse is known to affect
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sarcomere function [10]. Therefore, in the present study, we hypothesised that sarcomere contractility is
impaired in peripheral muscles of PAH patients.

To test this hypothesis, we measured sarcomeric function in permeabilised individual muscle fibres of
idiopathic PAH patients. In permeabilised muscle fibres, sarcomeric contractility can be studied without the
confounding effects of processes upstream in the excitation-contraction coupling cascade. The fibres were
isolated from quadriceps muscle (vastus lateralis) biopsies of female PAH patients (N=11) and were
compared to those from healthy, age- and sex-matched control subjects (N=8). For patients’ characteristics,
see figure 1a. All subjects gave written informed consent before inclusion. Ethical approval was given by the
institutional review board at VU University Medical Center, Amsterdam, the Netherlands. This report
focuses on results obtained on fast-twitch fibres because of the low number of slow-twitch muscle fibres
present in the biopsies (PAH: number of patients (Npatients)=4, number of fibres (nfibres)=5; control:
Npatients=5, nfibres=13).

Individual fibres were mounted between a force transducer and servomotor, and exposed to activating
calcium solutions, as described previously [9]. Maximal tension (i.e. maximal force normalised to muscle
fibre cross-sectional area (CSA)) was significantly lower in fast-twitch muscle fibres of PAH patients
(Npatients=11, nfibres=112) than in control subjects (Npatients=8, nfibres=62) (mean+sem 192+5 versus
226+8 mN-mm 2, p<0.005; fig. 1b). Based on our permeabilised muscle fibre measurements, we observed
no significant difference in fast-twitch muscle fibre CSA between groups (PAH versus control: 3387+280
versus 3307+242 um’; p=0.84).

In muscle fibres, force is generated by the cyclic interaction between myosin-based cross-bridges and actin.
Thus, to determine the underlying cause of the reduction in maximal tension, we studied cross-bridge
cycling kinetics. In permeabilised muscle fibres, active force generation is determined by: 1) the fraction of
strongly bound cross-bridges; 2) the number of available cross-bridges; and 3) the force generated per
cross-bridge. First, to estimate the fraction of strongly bound cross-bridges we measured the rate constant
of force redevelopment (ktr) during maximal activation. No significant difference in ktr was observed in
fast-twitch muscle fibres (fig. 1c), suggesting that the fraction of strongly bound cross-bridges was
unaltered. Secondly, to estimate the number of available cross-bridges, we measured active stiffness by
imposing fast (<1 ms), small length changes on the fibre during maximal activation. Active stiffness
reflects the number of attached cross-bridges during activation, which is determined by both the fraction
of strongly bound cross-bridges (ktr) as well as the number of available cross-bridges. We found a
significant decrease in active stiffness in fast-twitch muscle fibres of PAH patients (fig. 1d). Since ktr was
unaltered, this suggests that the number of available cross-bridges is reduced in quadriceps muscle fibres
of PAH patients. Finally, we estimated the force generated per cross-bridge by calculating the tension/
stiffness ratio. No significant difference was observed between groups (fig. le), indicating that the force
generated per cross-bridge is unaltered.

During daily life activities, quadriceps muscles are generally not maximally activated but activated at
submaximal motor neuron firing rates, which yield submaximal calcium concentrations ([Ca*™)).
Therefore, we measured force at submaximal [Ca®*]. The tension-[Ca**] relationship shows that at high
[Ca®*], tension was significantly lower (fig. 1f). The [Ca®"] at which 50% of the maximal force is reached
was unaffected in fast-twitch muscle fibres of PAH patients. Thus, changes in the Ca®" sensitivity of force
do not contribute to contractile muscle fibre weakness in PAH patients.

For optimal active force generation, structural integrity of the sarcomere is indispensable. This structural
integrity is regulated by the passive elastic properties of the giant sarcomeric protein titin. Therefore, we
measured passive tension in muscle fibres by stretching the fibre from slack length (~1.9 um) to a
sarcomere length of ~3.2 um (velocity, 10% length change per second) while in relaxing solution ([Ca*']
1 nM). A significant upward shift in passive tension-sarcomere length relationship was observed in
fast-twitch muscle fibres (fig. 1g), indicating that the passive tension of quadriceps muscle fibres is
increased in PAH patients.

This is the first study to show sarcomeric contractile weakness in the quadriceps muscle of PAH patients.
This weakness is caused by a reduction in the number of available cross-bridges, which might result from
a loss of the major contractile protein myosin. Notably, the reduction in maximal tension (~15%) was less
than the reduction in muscle strength measured in vivo (20-30%) [3], suggesting that extrasarcomeric
changes, for example, in the process of excitation—contraction coupling, and/or muscle atrophy also
contribute to peripheral muscle weakness.

A limitation of the present study is that our findings are restricted to fast-twitch muscle fibres, whereas the
vastus lateralis in humans, including PAH patients, contains 30-40% slow-twitch fibres [7]. The low
number of slow-twitch muscle fibres found in the biopsies might be a result of sampling error. Therefore,
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FIGURE 1 a) Patients” characteristics. Data are presented as n or meansp, unless otherwise stated. iPAH: idiopathic pulmonary arterial hypertension; NYHA:
New York Heart Association; 6MWD: 6-min walking distance; mPAP: mean pulmonary artery pressure; NT-proBNP: N-terminal pro-brain natriuretic peptide.
*: therapies consisted of a phosphodiesterase type 5 inhibitor, an endothelin receptor antagonist and/or prostacyclin. b) Maximal tension (i.e. maximal force
per mm” cross sectional area at 20°C and a calcium concentration ([Ca**]) of 32 uM) is significantly reduced in fast-twitch quadriceps muscle fibres of
pulmonary hypertension (PAH) patients compared with age- and sex-matched control subjects (CTRL). c¢) No change in the rate constant of force
redevelopment (ktr) was observed between groups, suggesting that the fraction of strongly bound cross-bridges is unaltered. d) Active stiffness, measured by
imposing fast (<1 ms), small length steps (0.3-0.9% of initial length) on the fibre during maximal activation, was significantly lower in fast-twitch muscle fibres
of PAH patients than in control subjects, indicating that the number of attached cross-bridges during activation is reduced. e) The tension/stiffness ratio, an
estimate of the force per cross-bridge, was not significantly different between groups. f) The tension-[Ca**] curve shows that at high [Ca®'], tension was
significantly lower. However, the [Ca*'] at which 50% of the force is reached (ECs0) was not significantly different (inset); thus, Ca®" sensitivity is unaltered.
g) A significant upward shift in the passive tension-sarcomere length relationship was observed in PAH patients, suggesting an increase in passive tension in
PAH patients. Data are presented as meantsem. N: number of patients; pinteraction: p-value for interaction. *: p<0.05 versus control.

caution is warranted when extrapolating the current findings to the whole muscle. Measurements were
performed shortly after the biopsy was taken to avoid deterioration of muscle fibres over time. The
researcher involved in the experiments was also involved in obtaining the biopsies. Therefore, the
experiments were not performed blind, which is another limitation of this study.

In addition, we observed that passive tension of quadriceps muscle fibres was increased in PAH patients.
This was an unexpected finding, as muscle disuse and loss of myosin are associated with a reduction in
passive tension [11]. Passive tension was already increased by 39% at a sarcomere length of 2.5 um, with a
more pronounced increase at higher sarcomere lengths. As in vivo, muscle contraction is estimated to
occur at a sarcomere length ranging from 2.5 to 3.2 um [12], the increase in passive tension is likely to
affect in vivo muscle function. Increased titin-based passive tension is associated with an increase in the
Ca®" sensitivity of force generation, possibly by reducing myofilament lattice spacing [13]. Although
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speculative, the increase in passive tension in PAH patients might be a compensatory mechanism to
maintain Ca®* sensitivity and, thus, submaximal force generation.

As muscle dysfunction affects exercise capacity and quality of life of PAH patients, therapeutic options that
specifically improve skeletal muscle function are warranted. While it is recognised that exercise training
can improve muscle function and exercise capacity in PAH patients [5], its tolerability is limited in
severely haemodynamically impaired PAH patients [6]. Calcium sensitisers, which specifically target
sarcomeric function by improving submaximal force generation and reduced [Ca®*] pumping by the
sarco/endoplasmic reticulum Ca®* ATPase [14, 15], might be a pharmacological therapeutic option to
improve muscle function in this patient population.

To conclude, peripheral muscle weakness in PAH patients is at least partly caused by sarcomeric
dysfunction. As muscle weakness might contribute to the reduction in exercise capacity, therapeutic
options to specifically improve muscle function should be studied.
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