
Network medicine, multimorbidity and the
lung in the elderly

Rosa Faner1,2, Tamara Cruz1,2, Alejandra López-Giraldo1,2,3 and Alvar Agustı́1,2,3,4
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ABSTRACT Noncommunicable diseases, including cardiovascular, metabolic and respiratory diseases,

among others, are the major medical challenge of the 21st century. Most noncommunicable diseases are

related to the ageing process and often co-occur in the same individual. However, it is unclear whether the

index disease is somehow influencing the development of the other ones (comorbidity) or whether all of

them (including the index disease) simply represent the clinical expression of pathological ageing

(multimorbidity). The pathobiology of ageing, chronic obstructive pulmonary disease (COPD) and

concomitant disorders is complex. A new field of research, known as systems biology if applied to model

systems or network medicine if applied to human beings, has emerged over the past decade or so, to address

biological complexity in a holistic, integrated way. It offers, therefore, great potential to decipher the

relationship between ageing, COPD and comorbidities/multimorbidities. In this State of the Art review we

present the basic concepts of systems biology, use some examples to illustrate the potential of network

medicine to address complex medical problems, and review some recent publications that show how a

systems-based research strategy can contribute to improve our understanding of multimorbidity and age-

related respiratory diseases.

@ERSpublications

Systems medicine can tackle the complexity of noncommunicable diseases: ageing and major
chronic respiratory diseases http://ow.ly/ysZkN

Support statement: This work was supported, in part, by FIS 12/01117, SEPAR 192/2012, BECA FUCAP 2013, BECA
SEPAR 065/2013, RESERCAIXA 2012, 2014FIB00417 and BFI-2012-66.

Conflict of interest: Disclosures can be found alongside the online version of this article at erj.ersjournals.com

Copyright �ERS 2014

Received: April 28 2014 | Accepted after revision: June 16 2014 | First published online: July 25 2014

| STATE OF THE ART
MULTIMORBIDITY AND THE LUNG

Eur Respir J 2014; 44: 775–788 | DOI: 10.1183/09031936.00078714 775

http://ow.ly/ysZkN
erj.ersjournals.com


Introduction
On September 19, 2011, the United Nations General Assembly declared noncommunicable diseases as the

major medical challenge of the 21st century [1]. Noncommunicable diseases include a number of highly

prevalent diseases, such as cardiovascular diseases, chronic respiratory diseases, cancer, diabetes,

neuropsychiatric disorders and arthritis [2]. Noncommunicable diseases are now the world’s leading cause

of disease burden and mortality (greater than that of infectious diseases), are increasing in prevalence (even

in low- and middle-income countries) mostly in relation to the ageing of the population [3], and are

extremely costly, an under-appreciated cause of poverty and a limitation for economic development [2].

Importantly, most noncommunicable diseases are related to the ageing process and often co-occur in the

same individual. According to HIDALGO et al. [4], ‘‘a comorbidity relationship between two diseases exists

whenever they affect the same individual substantially more than chance alone’’. However, it is unclear

whether the index disease is somehow influencing the development of the other ones (comorbidity) or

whether all of them (including the index disease) simply represent the clinical expression of pathological

ageing (multimorbidity) [5].

Chronic obstructive pulmonary disease (COPD) is a prominent noncommunicable disease because of its

high prevalence, rising incidence and associated economic costs [6]. Although the inhalation of noxious

particles and gases, mostly through tobacco smoking, is the main risk factor for COPD, it is also

characterised by abnormal lung ageing [7] and is often associated with comorbidities/multimorbidities [8]

that significantly influence the prognosis and clinical course of the patients [6]. This review addresses the

following points in relation to COPD, multimorbidity and ageing. First, ageing is an extremely complex

process [9, 10], characterised by progressive loss of organ function and increased vulnerability to adverse

outcomes and death (i.e. frailty) [11]. Secondly, lung function, like the function of most other human

organs, decreases with age [12, 13], and several respiratory diseases, like COPD, are related to pathological

ageing [7]. Thirdly, COPD is often accompanied by other nonrespiratory but also chronic and age-related

diseases, including cardiovascular, metabolic, osteoskeletal and neurological diseases among others.

Whether these are the consequence of COPD itself (i.e. comorbidity) and/or they result from shared risk

factors and molecular pathways (i.e. multimorbidity) is currently unclear [14–21], and the terms

‘‘comorbidity’’ and ‘‘multimorbidity’’ are often used indistinguishably and, potentially, erroneously. Finally,

many age-related diseases, including COPD, are associated with low-grade chronic systemic inflammation,

so-called ‘‘inflamm-ageing’’ [22, 23], and this can be an important pathogenic mechanism of

multimorbidity [24]. However, the inflammatory response is also extremely complex and dynamic, and

the link between multimorbidity and inflammation is not well understood [24].

Biological complexity (be it related to ageing, disease pathobiology or inflammation) has been traditionally

investigated using a reductionist approach, i.e. trying to study the isolated structure and function of genes,

proteins, metabolites and/or cellular organelles [25, 26]. This research strategy has been extremely successful

and probably reached its summit in 2001 with the publication of the full sequence of the human genome

[27]. However, there is now consensus that the building of post-genomic medicine requires an integrative

approach in order to best transfer all this molecular information to clinical practice [25, 26, 28–30]. To

move in that direction, a new field of research, known as systems biology if applied to model systems [31] or

network medicine if applied to human beings [32, 33], has emerged over the past decade or so, to address

biological complexity in a holistic, integrated way. Hence, systems biology and network medicine offer great

potential to decipher the relationship between ageing, multimorbidity and lung diseases [2, 29]. In this State

of the Art review we aim to present the basic concepts of systems biology, use some examples to illustrate

the potential of network medicine to address complex medical problems, and review some recent

publications that show how a systems-based research strategy can contribute to improving our

understanding of multimorbidity and age-related respiratory diseases.

Systems biology: basic concepts
Systems biology is a novel scientific discipline that seeks to address biological complexity by integrating data

within and between different levels of biological complexity (genes, molecules, cells, tissues, organs and even

society and environment), modelling it and then understanding its emergent properties, i.e. those properties

that cannot be explained by any of the individual components of the system [29, 32, 34, 35]. A system is not

just a catalogue of genes and proteins, and its properties cannot be fully understood by simply drawing

diagrams of their interconnections [34]. Systems biology tries to understand how they inter-relate and

respond to external perturbations in a dynamically changing system [34]. According to Kitano, one of the

founders of systems biology, this requires the understanding of four key properties of the system [34]:

1) system structures, which include the network of gene interactions and biochemical pathways, and how

they modulate the physical properties of intracellular and multicellular structures; 2) system dynamics,

which is how the system behaves over time and how it responds to different perturbations; 3) control
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methods, used to minimise malfunction of the systems, which, interestingly, can become potential

therapeutic targets for treatment of disease; and 4) design methods, which can be used to modify and/or

construct biological systems with specifically desired properties, instead of blind trial and error.

To achieve these goals, systems biology generally follows an iterative sequential strategy. This involves the

use of high-throughput platforms to collect genome, transcriptome, proteome and metabolome

information (collectively known as ‘‘omics’’ techniques), sometimes complemented with information

existing in publicly available databases through knowledge management platforms [36]. Bio-computing

algorithms are used to generate multiscale (from the molecular to the organ level) predictive mathematical

models [37], then these models are used to formulate novel working hypotheses on the mechanisms and

pathways involved in the disease of interest. These novel hypotheses are tested through perturbation

experiments, which can be done in silico (computer model simulation), in vitro (cell culture), or in vivo

(animal models), then the experimental responses observed are compared with those predicted by the initial

mathematical models, which are then refined accordingly. This process is iterated until the derived model

predicts, with reasonable accuracy, the observed experimental findings, at which point the model allows a

better understanding of the disease of interest and the identification of novel biomarkers [38]. Clearly,

therefore, systems biology requires multidisciplinary collaboration, as does network medicine, as will be

described in the next section.

Network medicine: some examples
Human health and disease are emergent properties of an extremely complex system (the human body) that

relies on the interaction of many components, within and across cells and organs [29, 30]. The potential

complexity of this network, the so-called ‘‘human interactome’’, is daunting: ,25 000 protein-coding genes,

,1000 metabolites, an undefined number of distinct proteins and functional RNA molecules, and more

than 100 000 cellular components, which all serve as the nodes of the human interactome [33]. This intra-

and intercellular connectivity implies that the impact of a specific abnormality is not restricted to the

activity of that individual component of the interactome, but can spread along the links (connections or

edges) of the network and alter the activity of other components, hence modulating the final phenotypic

expression of the original molecular abnormality [33]. In essence, the basic hypothesis of network medicine

is that human diseases arise as a consequence of one or more biological networks in the relevant organ that

have become disease-perturbed through genetic and/or environmental pathogenic changes [25].
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FIGURE 1 Relationships between genes, environment and phenotypes. Genes were originally conceived as the
‘‘determinants of a phenotype’’ (vertical arrow). However, the current biological notion of a gene is that of DNA
sequences whose phenotypic expression depends on complex interactions with the environment mediated by biological
networks, which enable, filter, condition and buffer them. Reproduced and modified from [39] with permission from
the publisher.

MULTIMORBIDITY AND THE LUNG | R. FANER ET AL.

DOI: 10.1183/09031936.00078714 777



This is illustrated in figure 1, which shows that, contrary to the original concept of a ‘‘gene’’ as the

‘‘determinant of the phenotype’’ (vertical arrow), the current notion of a ‘‘gene’’ is that it is merely a DNA

sequence whose influence on the phenotype is modulated by environmental influences through biological

networks (circle), which include signalling pathways, conditioners, buffers and incubators that enable and

restrict reactions [39]. This network perspective has direct implications for the understanding of the

relationship between age-related multimorbidity and respiratory diseases, since a disease phenotype in

complex diseases is rarely the consequence of an abnormality in a single effector gene product, but reflects

various pathobiological processes that interact in this complex network [33], and there may be functional,

molecular and causal relationships among apparently distinct phenotypes [33].

Following these realisations, Barabási, one of the founders of network medicine [33], proposed the term

‘‘diseasome’’ to illustrate that, although often treated separately, most human diseases are not independent

of each other [32]. As shown in figure 2, one way to visualise the inter-relationships among human diseases

is to construct a disease network (middle layer), in which two diseases are connected if they have a common

genetic, regulatory or metabolic origin and/or common protein–protein interactions (bottom layer) [32].

The social–environmental network (top layer) is also of key importance to human disease (fig. 3). In the

case of respiratory diseases, this top layer includes smoking and exposure to other toxic environmental gases

and particles, infections and allergens, which may interact (cold temperatures interact with viral infections,

Social links

Family ties

Physical proximity

Obesity

AsthmaDiabetes
mellitus

Insulin
resistance

Metabolic 

  network

Protein–protein

  interactions

Regulatory

  network

Metabolic

netw
ork

Disease

network

Social

network

H
2 O CO

2

FIGURE 2 Graphical illustration of the diseasome (middle layer), where two diseases are connected if they have a
common genetic or functional origin (bottom layer). A third relevant network for human disease is the social network
(top layer), which encompasses all human-to-human interactions and may play a role in the spread of infectious and
noninfectious (obesity, smoking) diseases. Reproduced from [32] with permission from the publisher.
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spring with allergens, etc.) and form a true network themselves too [40, 41]. In other chronic diseases, such

as obesity, human-to-human interactions have been shown to have a key pathogenic role [42].

Barabási and co-workers also published the first description of the human diseasome (which they called the

‘‘human disease network’’ [43]), a network of human diseases linked by known shared susceptibility genes

(fig. 4). This analysis provided several observations of great interest.

First, like many other biological networks, the human disease network has a scale-free structure. As shown

in figure 5, scale-free networks are a particular type of network characterised by having the majority of the

nodes (i.e. the core elements of the network, whether they are genes, proteins, metabolites or whatever)

connected to other nodes of the network by a relatively small number of links, whereas a few nodes (hubs)

present an extremely high number of links [44, 45]. This is very different from the Poisson network, where

the majority of nodes have a similar (and relatively small) number of links. Scale-free networks are

differentially sensitive to damage [46]. This means that if a peripheral node stops functioning, the network

is very likely to continue working without problem. By contrast, if a hub is damaged, the functionality of the

entire network is likely to be jeopardised [46].

Secondly, whereas the vast majority of disease genes were nonessential, showed no tendency to encode hub

proteins and their expression pattern indicated that they were localised in the functional periphery of the

network [43], essential genes encoded hub proteins that were expressed widely in most tissues [29].

Finally, genes associated with similar diseases exhibited a higher likelihood of physical interaction of their

products and a higher expression profiling similarity of their transcripts, supporting the existence of shared

‘‘disease modules’’ [43]. Disease modules are a ‘‘group of network components that together contribute to a

cellular function and disruption of which results in a particular disease phenotype’’ [33]. Disease modules

can be identified by combining high-throughput ‘‘omic’’ results in carefully designed experiments and

bioinformatic analysis using the interactome of all known protein–protein interactions, DNA–protein

interactions and human metabolic pathways [33].

It is important to note that the interactome is currently incomplete [33]. In any case, the human disease

network illustrates the potential of network medicine to systematically explore both the molecular
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MULTIMORBIDITY AND THE LUNG | R. FANER ET AL.

DOI: 10.1183/09031936.00078714 779



complexity of a particular disease, leading to the identification of disease modules and pathways that may

become targets for drug development, and the molecular relationships among apparently distinct (patho)

phenotypes (multimorbidity). Furthermore, network medicine can facilitate the identification of better and

more accurate biomarkers, to monitor the functional integrity of networks that are perturbed by diseases,

and can lead to novel and better disease classification taxonomies [30, 33]. RZHETSKY et al. [47] published

similar results using 161 disorders in 1.5 million patient records.

A network approach to ageing, multimorbidity and respiratory diseases
The three processes considered here (ageing, multimorbidity and chronic respiratory diseases) are, each of

them, extremely complex. There have been a few attempts to address their complexity using systems biology

and network medicine approaches. These are reviewed below.

Network approaches to ageing
Ageing is a complex process [9, 10]. LÓPEZ-OTÍN et al. [10] have recently proposed nine hallmarks of ageing

(fig. 6): genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated

nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered

intercellular communication. A major scientific challenge is to understand their relationships and relative

contribution to normal and pathological ageing (fig. 6) [10].

Several studies have already used a systems biology/network medicine approach to study the complexity of

ageing [48]. For instance, SOZOU et al. [49] investigated the interactions of the different factors known to

influence cell sencescene, including oxidative damage, telomere shortening and mitocondrial and nuclear

DNA mutations, whereas other groups studied the relationships between dietary restriction, metabolic

regulation and longevity in model organisms [50–52]. In humans, the study of centenarians led to the

identification of a number of loci associated with longevity [53]. Likewise, XUE et al. [54] used age-

dependent gene expression data and protein–protein interactions (i.e. the interactome) of transcriptionally

correlated genes to create an active ageing sub-network, where hubs were enriched in lifespan regulator

genes [54]. Interestingly, the in silico removal of these genes destabilised the network structure, suggesting

that ageing preferentially targets regulators controlling the organisation and coordination of temporal

switches [54, 55]. Although much more work remains to be done in order to understand the complexity of

normal ageing and to extrapolate this new knowledge to pathological ageing and disease, it is clear that

studies using network-based approaches like those briefly reviewed here have just begun to unravel them.

Network approaches to multimorbidity
As discussed, the diseasome is the network representation of human disease (nodes of the network) linked

by shared disease-associated cellular components [4]. To date, three types of disease-linking networks, based

on three different formalisms, have been described: 1) gene formalism, where diseases are linked based on

shared genes [43]; 2) metabolic formalism, where connections reflect shared metabolic pathways [56]; and

3) disease comorbidity formalism, where links between diseases are based on their co-occurrence in excess

to what is expected by chance [4]. The following three studies used these formalisms to understand the

complex network structure of comorbidity.

LEE et al. [56] used the gene and metabolic formalisms to explore the relationship among different diseases,

which were linked if mutated enzymes associated with them were responsible for catalysing adjacent

metabolic reactions. They found that connected disease pairs display higher correlated reaction flux rate,

corresponding enzyme-encoding gene co-expression, and higher comorbidity than those that have no

metabolic link between them [56]. Furthermore, the more connected a disease was to others, the higher was

its prevalence and associated mortality rate [56].

PARK et al. [57] used the disease comorbidity formalism to investigate the presence of significant

correlations between diseases in the Medicare registry, including more than 13 million individuals. To this

end, they also used the shared genes formalism and combined information on omics, shared genes, protein–

protein interactions and co-expression patterns, and found statistically significant correlations between

cellular interactions and comorbidity patterns, and that disease pairs with higher correlations tend to be

linked more strongly at the cellular network level [57]. These results not only provide relevant biological

information but also suggest that Medicare and other insurance databases could play an increasing role in

future studies of the systems biology of human cells and diseases [57].

Finally, HIDALGO et al. [4] published the so-called ‘‘phenotypic disease network’’, which summarises

comorbidity correlations obtained from the disease history in the Medicare registry, and, importantly,

investigated the dynamics over time of the phenotypic disease network. The main results showed that

patients develop diseases close in the network to those they already have, albeit with apparent sex and ethnic
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differences, and that patients diagnosed with diseases that are more highly connected in the phenotypic

disease network tend to die sooner than those affected by less connected diseases [4]. Overall, these

observations indicate that disease progression can be represented and studied using network analysis [4].

Network approaches to chronic respiratory diseases
Some recent studies have used network approaches to study the pathobiology of several chronic respiratory

diseases, including asthma [58], COPD [24, 59] and idiopathic pulmonary fibrosis [60]. Due to its frequent

relationship with multimorbidity, we will focus here on those addressing COPD.

The Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study was a

large 3-year observational controlled multicentre international study (NCT00292552) aimed at defining

clinically relevant subtypes of COPD and identifying novel biomarkers and genetic factors [61]. The results

of the ECLIPSE study have significantly influenced our understanding of COPD [62, 63]. Using data from

ECLIPSE, AGUSTÍ et al. [24] described the so-called ‘‘systemic inflammome’’ of smoking and COPD, a

network representation of systemic inflammation in these individuals. Importantly, this network analysis

showed that: 1) the inflammome of smoking and COPD are different; 2) 30% of COPD patients are never

inflamed whereas about 20% of them are persistently inflamed; and 3) despite similar lung structural and

functional abnormalities, the latter had a six times higher all-cause mortality (and double the incidence of

exacerbations) than the former during 3 years’ follow-up [24], hence identifying a novel phenotype that

requires research and, potentially, specific treatment [64, 65].

More recently, to explore the genetic expression basis of COPD, MENCHE et al. [59] used the clinical (age,

body mass index (BMI), tobacco smoking exposure, history of exacerbations), lung function (forced

expiratory volume in 1 s, expressed as % predicted), imaging (presence/severity of emphysema and/or

airway disease), systemic inflammation (high-sensitivity C-reactive protein, interleukin (IL)-6, IL-8,

chemokine C-C motif ligand (CCL)18, fibrinogen, tumour necrosis factor-a, surfactant protein (SP)-D)

and sputum transcriptomic (Affymetrix microarrays) data obtained in a subset of 140 patients who were

also recruited into the ECLIPSE study. The authors used a dual research strategy. First, they compared the

number of differentially expressed genes in the two extreme quartiles of several clinically relevant

phenotypes identified a priori by COPD experts, including the presence of chronic bronchitis (i.e. regular
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cough and sputum production), previous history of COPD exacerbations, low/high BMI, severity of airflow

limitation, presence/severity of emphysema and airway disease on computed tomography scan. Secondly,

they used an alternative but complementary approach, where they identified groups of patients with

maximally different gene expression patterns, and then compared their phenotypic clinical expression. To

identify these groups with extremely different transcriptomic signatures, the authors developed a novel

unbiased bioinformatics algorithm (the diVIsive Shuffling Approach (VIStA)), which, through an iterative

approach, ended up maximising gene expression differences between groups [59]. In brief, as shown in

figure 7a, the VIStA method is as follows. 1) The algorithm first randomly partitions the available patients

(n5140 in this case) into three groups of comparable size, compares gene expression of groups 1 and 2 and

keeps group 3 as a reservoir. 2) It randomly swaps (shuffles) one patient from group 1 (or 2) with another

one from the reservoir (group 3), and differential gene expression is compared again. If the new number of

differentially expressed genes increases, the swap is accepted, if not it is rejected. 3) Step 2 is iterated until

the number of differentially expressed genes reaches a plateau, generally after approximately 1000 attempted

swaps. At this point, the resulting groups 1 and 2 include patients with the maximal gene expression

differences [59].

The results of the first approach, i.e. the comparison of differentially expressed genes in the extreme

quartiles of the clinical phenotypes defined a priori by COPD experts, failed to identify any difference,

except for the severity of airflow limitation, where 6049 differentially expressed genes were identified [59],
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indicating that mild/moderate and severe/very severe COPD are associated with significantly different

transcriptomic signatures in sputum. The results of the reverse approach using VIStA showed that, after

about 500 VIStA runs, the severity of airflow limitation, this time in combination with the amount and

severity of emphysema present, was again the most important hub of the network (fig. 7b) [59].

Interestingly, however, the investigators also observed that age, BMI, exercise capacity, chronic bronchitis,

some inflammatory biomarkers (IL-6, IL-8 and SP-D) and some sputum findings (high number of

neutrophils and low number of lymphocytes) provide further discriminant power [59]. In summary, the

results of the study by MENCHE et al. [59] illustrate the potential of systems biology and network medicine to

address the complexity of chronic respiratory diseases like COPD. Specifically, they demonstrate that mild/

moderate versus severe/very severe COPD are associated with different sputum transcriptomic signatures.

What is cause and effect cannot be dissected from this cross-sectional analysis, but these observations are

certainly compatible with the hypothesis that mild/moderate and severe/very severe COPD might be two

different diseases.

Putting ageing, multimorbidity and COPD together using systems/network approaches
Several articles have attempted to put together multimorbidity, age and COPD. DIVO et al. [19] evaluated

the prevalence of comorbidities in patients with COPD attending a pulmonary clinic and assessed their

relationship with mortality (fig. 8). They observed that 12 specific comorbidities were significantly

associated with an increased risk of death. They represented graphically the prevalence of these

comorbidities and their relationship with the risk of death as the comorbidome [19].

VANFLETEREN et al. [66] identified five clusters of patients based on 13 objectively identified comorbidities

and measured systemic inflammation in 213 COPD patients attending a rehabilitation programme. The five

clusters were: ‘‘less comorbidity’’, ‘‘cardiovascular’’, ‘‘cachectic’’, ‘‘metabolic’’ and ‘‘psychological’’. These

clusters differed in health status but were comparable in terms of airflow limitation severity and systemic

inflammatory markers [66]. Unfortunately, no longitudinal data or relationships with clinically relevant

outcomes were provided.

VAN REMOORTEL et al. [21] have recently investigated the effects of smoking and ageing on the prevalence of

premorbid risk factors and comorbid diseases, as well as their association with daily physical activity (by

multisensor activity monitor), in the preclinical stages of COPD. They studied a population-based sample of

subjects (n560) with a new diagnosis of mild-to-moderate COPD by spirometry screening. The results were

compared with those of 60 smoking controls with normal lung function and 60 never-smoker subjects, all of

them age matched [21]. The main results showed that premorbid risk factors and comorbid diseases were

significantly higher in preclinical COPD than in never-smokers but similar to smoking controls;
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FIGURE 7 a) Schematic representation of the diVIsive Shuffling Approach (VIStA). b) Network representation of the
clinical characteristics identified by VIStA. Node size is proportional to the number of times a given clinical characteristic
was found to be significant in VIStA, and the width of a link indicates how often two measures appeared significant in the
same VIStA division. The core group (hub) contains severity of airflow limitation (GOLDCD) and the qualitative
(EMPHETCD) and quantitative (FV950) measures of emphysema. SPD: surfactant protein D; TNFA: tumour necrosis
factor-a; FIBRINOG: fibrinogen; CCL18: chemokine C-C motif ligand 18; DWALK: 6-min walking distance; CRPHS:
high-sensitivity C-reactive protein; IL: interleukin; BMI: body mass index. Reproduced and modified from [59] with
permission from the publisher.
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cardiovascular diseases and musculoskeletal dysfunction were particularly prevalent in smokers with or

without COPD, and other diseases that were more frequently found in the smoking group included pre-

diabetes, systemic arterial hypertension, dyslipidaemia and obesity. Multivariate logistic regression analysis

showed that physical inactivity and smoking were independent risk factors for suffering two or more

comorbidities [21]. Overall, these observations challenge the concept that COPD is an independent risk

factor for comorbidities by showing that physical inactivity and smoking, but not COPD as such, are

associated with their development [21]. Overall, these results are in keeping with other observations in

COPD patients, showing that the prevalence of comorbidities is independent of the severity of airflow

limitation (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades) [66–68], and that age

rather than COPD severity accounted for most of the comorbidities of these patients [69].

Other interesting observations that used a systems biology approach in COPD include: the study by XIE

et al. [70], who identified the serum levels of the microRNAs miR-21 and miR-181a as potential biomarkers

of COPD susceptibility among heavy smokers; that of EZZIE et al. [71], who identified 70 microRNAs and

2667 mRNAs differentially expressed in lung tissue from smokers with and without COPD [71]; and that of

TURAN et al. [72], who investigated the relationship between skeletal muscle dysfunction, a frequent and

clinically relevant comorbidity in COPD [73, 74], pulmonary gas exchange, systemic inflammation and

response to training. The results of TURAN et al. [72] indicate that, in COPD, skeletal muscle fails to co-

ordinately activate the expression of several remodelling and bioenergetics pathways, and this may be linked

to an abnormal expression of histone modifiers, which, in turn, appears to correlate with tissue oxygen

utilisation. Overall, these observations suggest that cell hypoxia may be a key factor driving skeletal muscle
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prevalence of the disease. The proximity to the centre (mortality) expresses the strength of the association between the
disease and risk of death. All circles associated with a statistically significant increase in mortality are fully inside the dotted
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dysfunction in COPD patients [72]. This contrasts with current hypotheses based on the role of systemic

inflammation and suggests an alternative oxygen-driven, epigenetic control mechanism [72].

Finally, AGUSTÍ et al. [75] have recently proposed a network approach to the pathobiology of COPD at the

organ and molecular levels. The basic tenant of this approach is that COPD is not a single-organ condition,

and that disturbances of a complex network of inter-organ connected responses occur and modulate the

natural history of the disease [75]. The acceptance of such inter-organ connectivity leads to the appreciation

that toxic inhaled agents that directly affect the lungs are also likely to exert effects (direct or indirect) on

more distant organs. These, in turn, might modulate the lung’s own response (be it acute or chronic) to the

initiating injury [75]. Specifically, the authors propose a vascularly connected network where the lungs are

the main external sensor of the system and a source of so-called ‘‘danger signals’’, the endothelium acts as

an internal sensor of the system (and also is a potential target tissue) and the bone marrow and adipose

tissue are two key responding elements that produce both inflammatory and repair signals. According to

this novel network model, the development of COPD and associated multimorbidities would depend on

how this vascular connected network responds, adapts or fails to adapt (dictated by the genetic and epigenetic

background of the individual) to the inhalation of particles and gases, mainly in cigarette smoke [75].

Conclusions
Many noncommunicable diseases, including chronic respiratory diseases like COPD, are associated with

ageing and are often accompanied by other noncommunicable diseases (multimorbidity). The pathogenesis

of each of them (including that of the ageing process), as well as their inter-relationships at the molecular,

clinical and environmental levels, are extremely complex and dynamic. This State of the Art review

highlights that systems biology and network medicine offer a new research strategy to decipher this

multilevel and dynamic complexity, by reviewing some recent investigations in the field. We firmly believe

that this is only the beginning of a new way of understanding and, eventually, diagnosing and treating what,

as stated before, has been identified by the United Nations General Assembly as the major health challenge at

the beginning of the 21st century: the growing epidemic of age-related noncommunicable diseases. Stay tuned!
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