STATE OF THE ART
MULTIMORBIDITY AND THE LUNG

Network medicine, multimorbidity and the
lung in the elderly

1,23 1,234

Rosa Faner'? Tamara Cruz'?, Alejandra Lépez-Giraldo'*®and Alvar Agusti

Number 1 in the series “Multimorbidity and the lung”
Edited by L.M. Fabbri and J.M. Drazen

Affiliations:

'Institut d'investigacions Biomeédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
2CIBER Enfermedades Respiratorias (CIBERES), Barcelona, Spain.

*Thorax Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.
“Fundacié de Investigacié Sanitaria Illes Balears (FISIB), Palma de Mallorca, Spain.

Correspondence: Alvar Agusti, Institut del Torax, Hospital Clinic, Villarroel 170 (Escalera 3, Planta 5),
Barcelona 08036, Spain. E-mail: alvar.agusti@clinic.ub.es

ABSTRACT Noncommunicable diseases, including cardiovascular, metabolic and respiratory diseases,
among others, are the major medical challenge of the 21st century. Most noncommunicable diseases are
related to the ageing process and often co-occur in the same individual. However, it is unclear whether the
index disease is somehow influencing the development of the other ones (comorbidity) or whether all of
them (including the index disease) simply represent the clinical expression of pathological ageing
(multimorbidity). The pathobiology of ageing, chronic obstructive pulmonary disease (COPD) and
concomitant disorders is complex. A new field of research, known as systems biology if applied to model
systems or network medicine if applied to human beings, has emerged over the past decade or so, to address
biological complexity in a holistic, integrated way. It offers, therefore, great potential to decipher the
relationship between ageing, COPD and comorbidities/multimorbidities. In this State of the Art review we
present the basic concepts of systems biology, use some examples to illustrate the potential of network
medicine to address complex medical problems, and review some recent publications that show how a
systems-based research strategy can contribute to improve our understanding of multimorbidity and age-
related respiratory diseases.
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Introduction

On September 19, 2011, the United Nations General Assembly declared noncommunicable diseases as the
major medical challenge of the 21st century [1]. Noncommunicable diseases include a number of highly
prevalent diseases, such as cardiovascular diseases, chronic respiratory diseases, cancer, diabetes,
neuropsychiatric disorders and arthritis [2]. Noncommunicable diseases are now the world’s leading cause
of disease burden and mortality (greater than that of infectious diseases), are increasing in prevalence (even
in low- and middle-income countries) mostly in relation to the ageing of the population [3], and are
extremely costly, an under-appreciated cause of poverty and a limitation for economic development [2].
Importantly, most noncommunicable diseases are related to the ageing process and often co-occur in the
same individual. According to HIDALGO et al. [4], “a comorbidity relationship between two diseases exists
whenever they affect the same individual substantially more than chance alone”. However, it is unclear
whether the index disease is somehow influencing the development of the other ones (comorbidity) or
whether all of them (including the index disease) simply represent the clinical expression of pathological
ageing (multimorbidity) [5].

Chronic obstructive pulmonary disease (COPD) is a prominent noncommunicable disease because of its
high prevalence, rising incidence and associated economic costs [6]. Although the inhalation of noxious
particles and gases, mostly through tobacco smoking, is the main risk factor for COPD, it is also
characterised by abnormal lung ageing [7] and is often associated with comorbidities/multimorbidities [8]
that significantly influence the prognosis and clinical course of the patients [6]. This review addresses the
following points in relation to COPD, multimorbidity and ageing. First, ageing is an extremely complex
process [9, 10], characterised by progressive loss of organ function and increased vulnerability to adverse
outcomes and death (i.e. frailty) [11]. Secondly, lung function, like the function of most other human
organs, decreases with age [12, 13], and several respiratory diseases, like COPD, are related to pathological
ageing [7]. Thirdly, COPD is often accompanied by other nonrespiratory but also chronic and age-related
diseases, including cardiovascular, metabolic, osteoskeletal and neurological diseases among others.
Whether these are the consequence of COPD itself (i.e. comorbidity) and/or they result from shared risk
factors and molecular pathways (i.e. multimorbidity) is currently unclear [14-21], and the terms
“comorbidity” and “multimorbidity” are often used indistinguishably and, potentially, erroneously. Finally,
many age-related diseases, including COPD, are associated with low-grade chronic systemic inflammation,
so-called “inflamm-ageing” [22, 23], and this can be an important pathogenic mechanism of
multimorbidity [24]. However, the inflammatory response is also extremely complex and dynamic, and
the link between multimorbidity and inflammation is not well understood [24].

Biological complexity (be it related to ageing, disease pathobiology or inflammation) has been traditionally
investigated using a reductionist approach, i.e. trying to study the isolated structure and function of genes,
proteins, metabolites and/or cellular organelles [25, 26]. This research strategy has been extremely successful
and probably reached its summit in 2001 with the publication of the full sequence of the human genome
[27]. However, there is now consensus that the building of post-genomic medicine requires an integrative
approach in order to best transfer all this molecular information to clinical practice [25, 26, 28-30]. To
move in that direction, a new field of research, known as systems biology if applied to model systems [31] or
network medicine if applied to human beings [32, 33], has emerged over the past decade or so, to address
biological complexity in a holistic, integrated way. Hence, systems biology and network medicine offer great
potential to decipher the relationship between ageing, multimorbidity and lung diseases [2, 29]. In this State
of the Art review we aim to present the basic concepts of systems biology, use some examples to illustrate
the potential of network medicine to address complex medical problems, and review some recent
publications that show how a systems-based research strategy can contribute to improving our
understanding of multimorbidity and age-related respiratory diseases.

Systems biology: basic concepts

Systems biology is a novel scientific discipline that seeks to address biological complexity by integrating data
within and between different levels of biological complexity (genes, molecules, cells, tissues, organs and even
society and environment), modelling it and then understanding its emergent properties, i.e. those properties
that cannot be explained by any of the individual components of the system [29, 32, 34, 35]. A system is not
just a catalogue of genes and proteins, and its properties cannot be fully understood by simply drawing
diagrams of their interconnections [34]. Systems biology tries to understand how they inter-relate and
respond to external perturbations in a dynamically changing system [34]. According to Kitano, one of the
founders of systems biology, this requires the understanding of four key properties of the system [34]:
1) system structures, which include the network of gene interactions and biochemical pathways, and how
they modulate the physical properties of intracellular and multicellular structures; 2) system dynamics,
which is how the system behaves over time and how it responds to different perturbations; 3) control
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methods, used to minimise malfunction of the systems, which, interestingly, can become potential
therapeutic targets for treatment of disease; and 4) design methods, which can be used to modify and/or
construct biological systems with specifically desired properties, instead of blind trial and error.

To achieve these goals, systems biology generally follows an iterative sequential strategy. This involves the
use of high-throughput platforms to collect genome, transcriptome, proteome and metabolome
information (collectively known as “omics” techniques), sometimes complemented with information
existing in publicly available databases through knowledge management platforms [36]. Bio-computing
algorithms are used to generate multiscale (from the molecular to the organ level) predictive mathematical
models [37], then these models are used to formulate novel working hypotheses on the mechanisms and
pathways involved in the disease of interest. These novel hypotheses are tested through perturbation
experiments, which can be done in silico (computer model simulation), in vitro (cell culture), or in vivo
(animal models), then the experimental responses observed are compared with those predicted by the initial
mathematical models, which are then refined accordingly. This process is iterated until the derived model
predicts, with reasonable accuracy, the observed experimental findings, at which point the model allows a
better understanding of the disease of interest and the identification of novel biomarkers [38]. Clearly,
therefore, systems biology requires multidisciplinary collaboration, as does network medicine, as will be
described in the next section.

Network medicine: some examples

Human health and disease are emergent properties of an extremely complex system (the human body) that
relies on the interaction of many components, within and across cells and organs [29, 30]. The potential
complexity of this network, the so-called “human interactome”, is daunting: ~25 000 protein-coding genes,
~1000 metabolites, an undefined number of distinct proteins and functional RNA molecules, and more
than 100000 cellular components, which all serve as the nodes of the human interactome [33]. This intra-
and intercellular connectivity implies that the impact of a specific abnormality is not restricted to the
activity of that individual component of the interactome, but can spread along the links (connections or
edges) of the network and alter the activity of other components, hence modulating the final phenotypic
expression of the original molecular abnormality [33]. In essence, the basic hypothesis of network medicine
is that human diseases arise as a consequence of one or more biological networks in the relevant organ that
have become disease-perturbed through genetic and/or environmental pathogenic changes [25].

Phenotype

Biological
networks:

Signalling pathways,
filters, conditioners,
buffers;
incubators that enable
and restrict reactions

Original concept:
Gene = determinant of
phenotype

Environment

Molecular biology notion:
Gene = DNA sequence

DNA

FIGURE 1 Relationships between genes, environment and phenotypes. Genes were originally conceived as the
“determinants of a phenotype” (vertical arrow). However, the current biological notion of a gene is that of DNA
sequences whose phenotypic expression depends on complex interactions with the environment mediated by biological
networks, which enable, filter, condition and buffer them. Reproduced and modified from [39] with permission from
the publisher.
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FIGURE 2 Graphical illustration of the diseasome (middle layer), where two diseases are connected if they have a
common genetic or functional origin (bottom layer). A third relevant network for human disease is the social network
(top layer), which encompasses all human-to-human interactions and may play a role in the spread of infectious and
noninfectious (obesity, smoking) diseases. Reproduced from [32] with permission from the publisher.

This is illustrated in figure 1, which shows that, contrary to the original concept of a “gene” as the
“determinant of the phenotype” (vertical arrow), the current notion of a “gene” is that it is merely a DNA
sequence whose influence on the phenotype is modulated by environmental influences through biological
networks (circle), which include signalling pathways, conditioners, buffers and incubators that enable and
restrict reactions [39]. This network perspective has direct implications for the understanding of the
relationship between age-related multimorbidity and respiratory diseases, since a disease phenotype in
complex diseases is rarely the consequence of an abnormality in a single effector gene product, but reflects
various pathobiological processes that interact in this complex network [33], and there may be functional,
molecular and causal relationships among apparently distinct phenotypes [33].

Following these realisations, Barabasi, one of the founders of network medicine [33], proposed the term
“diseasome” to illustrate that, although often treated separately, most human diseases are not independent
of each other [32]. As shown in figure 2, one way to visualise the inter-relationships among human diseases
is to construct a disease network (middle layer), in which two diseases are connected if they have a common
genetic, regulatory or metabolic origin and/or common protein—protein interactions (bottom layer) [32].
The social-environmental network (top layer) is also of key importance to human disease (fig. 3). In the
case of respiratory diseases, this top layer includes smoking and exposure to other toxic environmental gases
and particles, infections and allergens, which may interact (cold temperatures interact with viral infections,
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FIGURE 3 Diagram illustrating the different levels of complexity of chronic obstructive pulmonary disease (COPD) and the outcomes of potential clinical
relevance (right-hand column). CVD: cardiovascular disease; GWAS: genome-wide association studies; miDNA: mitochondrial DNA; miRNA: microRNA;
ncRNA: noncoding RNA. Reproduced from [41] with permission from the publisher.

spring with allergens, etc.) and form a true network themselves too [40, 41]. In other chronic diseases, such
as obesity, human-to-human interactions have been shown to have a key pathogenic role [42].

Barabasi and co-workers also published the first description of the human diseasome (which they called the
“human disease network” [43]), a network of human diseases linked by known shared susceptibility genes
(fig. 4). This analysis provided several observations of great interest.

First, like many other biological networks, the human disease network has a scale-free structure. As shown
in figure 5, scale-free networks are a particular type of network characterised by having the majority of the
nodes (i.e. the core elements of the network, whether they are genes, proteins, metabolites or whatever)
connected to other nodes of the network by a relatively small number of links, whereas a few nodes (hubs)
present an extremely high number of links [44, 45]. This is very different from the Poisson network, where
the majority of nodes have a similar (and relatively small) number of links. Scale-free networks are
differentially sensitive to damage [46]. This means that if a peripheral node stops functioning, the network
is very likely to continue working without problem. By contrast, if a hub is damaged, the functionality of the
entire network is likely to be jeopardised [46].

Secondly, whereas the vast majority of disease genes were nonessential, showed no tendency to encode hub
proteins and their expression pattern indicated that they were localised in the functional periphery of the
network [43], essential genes encoded hub proteins that were expressed widely in most tissues [29].

Finally, genes associated with similar diseases exhibited a higher likelihood of physical interaction of their
products and a higher expression profiling similarity of their transcripts, supporting the existence of shared
“disease modules” [43]. Disease modules are a “group of network components that together contribute to a
cellular function and disruption of which results in a particular disease phenotype” [33]. Disease modules
can be identified by combining high-throughput “omic” results in carefully designed experiments and
bioinformatic analysis using the interactome of all known protein—protein interactions, DNA—protein
interactions and human metabolic pathways [33].

It is important to note that the interactome is currently incomplete [33]. In any case, the human disease
network illustrates the potential of network medicine to systematically explore both the molecular
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complexity of a particular disease, leading to the identification of disease modules and pathways that may
become targets for drug development, and the molecular relationships among apparently distinct (patho)
phenotypes (multimorbidity). Furthermore, network medicine can facilitate the identification of better and
more accurate biomarkers, to monitor the functional integrity of networks that are perturbed by diseases,
and can lead to novel and better disease classification taxonomies [30, 33]. RZHETSKY et al. [47] published
similar results using 161 disorders in 1.5 million patient records.

A network approach to ageing, multimorbidity and respiratory diseases

The three processes considered here (ageing, multimorbidity and chronic respiratory diseases) are, each of
them, extremely complex. There have been a few attempts to address their complexity using systems biology
and network medicine approaches. These are reviewed below.

Network approaches to ageing

Ageing is a complex process [9, 10]. LOPEZ-OTIN et al. [10] have recently proposed nine hallmarks of ageing
(fig. 6): genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated
nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered
intercellular communication. A major scientific challenge is to understand their relationships and relative
contribution to normal and pathological ageing (fig. 6) [10].

Several studies have already used a systems biology/network medicine approach to study the complexity of
ageing [48]. For instance, SOZOU et al. [49] investigated the interactions of the different factors known to
influence cell sencescene, including oxidative damage, telomere shortening and mitocondrial and nuclear
DNA mutations, whereas other groups studied the relationships between dietary restriction, metabolic
regulation and longevity in model organisms [50-52]. In humans, the study of centenarians led to the
identification of a number of loci associated with longevity [53]. Likewise, XUE et al. [54] used age-
dependent gene expression data and protein—protein interactions (i.e. the interactome) of transcriptionally
correlated genes to create an active ageing sub-network, where hubs were enriched in lifespan regulator
genes [54]. Interestingly, the in silico removal of these genes destabilised the network structure, suggesting
that ageing preferentially targets regulators controlling the organisation and coordination of temporal
switches [54, 55]. Although much more work remains to be done in order to understand the complexity of
normal ageing and to extrapolate this new knowledge to pathological ageing and disease, it is clear that
studies using network-based approaches like those briefly reviewed here have just begun to unravel them.

Network approaches to multimorbidity

As discussed, the diseasome is the network representation of human disease (nodes of the network) linked
by shared disease-associated cellular components [4]. To date, three types of disease-linking networks, based
on three different formalisms, have been described: 1) gene formalism, where diseases are linked based on
shared genes [43]; 2) metabolic formalism, where connections reflect shared metabolic pathways [56]; and
3) disease comorbidity formalism, where links between diseases are based on their co-occurrence in excess
to what is expected by chance [4]. The following three studies used these formalisms to understand the
complex network structure of comorbidity.

LEE et al. [56] used the gene and metabolic formalisms to explore the relationship among different diseases,
which were linked if mutated enzymes associated with them were responsible for catalysing adjacent
metabolic reactions. They found that connected disease pairs display higher correlated reaction flux rate,
corresponding enzyme-encoding gene co-expression, and higher comorbidity than those that have no
metabolic link between them [56]. Furthermore, the more connected a disease was to others, the higher was
its prevalence and associated mortality rate [56].

PARK et al. [57] used the disease comorbidity formalism to investigate the presence of significant
correlations between diseases in the Medicare registry, including more than 13 million individuals. To this
end, they also used the shared genes formalism and combined information on omics, shared genes, protein—
protein interactions and co-expression patterns, and found statistically significant correlations between
cellular interactions and comorbidity patterns, and that disease pairs with higher correlations tend to be
linked more strongly at the cellular network level [57]. These results not only provide relevant biological
information but also suggest that Medicare and other insurance databases could play an increasing role in
future studies of the systems biology of human cells and diseases [57].

Finally, HIDALGO et al. [4] published the so-called “phenotypic disease network”, which summarises
comorbidity correlations obtained from the disease history in the Medicare registry, and, importantly,
investigated the dynamics over time of the phenotypic disease network. The main results showed that
patients develop diseases close in the network to those they already have, albeit with apparent sex and ethnic
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FIGURE 4 Graphical representation of the human disease network, where each node corresponds to a distinct disorder and colours represent disease classes. The
size of each node is proportional to the number of genes participating in the corresponding disorder, and the thickness of the edge (link) is proportional to the
number of genes shared by the disorders it connects. Reproduced and modified from [43] with permission from the publisher.
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differences, and that patients diagnosed with diseases that are more highly connected in the phenotypic
disease network tend to die sooner than those affected by less connected diseases [4]. Overall, these
observations indicate that disease progression can be represented and studied using network analysis [4].

Network approaches to chronic respiratory diseases

Some recent studies have used network approaches to study the pathobiology of several chronic respiratory
diseases, including asthma [58], COPD [24, 59] and idiopathic pulmonary fibrosis [60]. Due to its frequent
relationship with multimorbidity, we will focus here on those addressing COPD.

The Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study was a
large 3-year observational controlled multicentre international study (NCT00292552) aimed at defining
clinically relevant subtypes of COPD and identifying novel biomarkers and genetic factors [61]. The results
of the ECLIPSE study have significantly influenced our understanding of COPD [62, 63]. Using data from
ECLIPSE, AGusTi et al. [24] described the so-called “systemic inflammome” of smoking and COPD, a
network representation of systemic inflammation in these individuals. Importantly, this network analysis
showed that: 1) the inflammome of smoking and COPD are different; 2) 30% of COPD patients are never
inflamed whereas about 20% of them are persistently inflamed; and 3) despite similar lung structural and
functional abnormalities, the latter had a six times higher all-cause mortality (and double the incidence of
exacerbations) than the former during 3 years’ follow-up [24], hence identifying a novel phenotype that
requires research and, potentially, specific treatment [64, 65].

More recently, to explore the genetic expression basis of COPD, MENCHE et al. [59] used the clinical (age,
body mass index (BMI), tobacco smoking exposure, history of exacerbations), lung function (forced
expiratory volume in 1 s, expressed as % predicted), imaging (presence/severity of emphysema and/or
airway disease), systemic inflammation (high-sensitivity C-reactive protein, interleukin (IL)-6, IL-8,
chemokine C-C motif ligand (CCL)18, fibrinogen, tumour necrosis factor-o, surfactant protein (SP)-D)
and sputum transcriptomic (Affymetrix microarrays) data obtained in a subset of 140 patients who were
also recruited into the ECLIPSE study. The authors used a dual research strategy. First, they compared the
number of differentially expressed genes in the two extreme quartiles of several clinically relevant
phenotypes identified a priori by COPD experts, including the presence of chronic bronchitis (i.e. regular
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cough and sputum production), previous history of COPD exacerbations, low/high BMI, severity of airflow
limitation, presence/severity of emphysema and airway disease on computed tomography scan. Secondly,
they used an alternative but complementary approach, where they identified groups of patients with
maximally different gene expression patterns, and then compared their phenotypic clinical expression. To
identify these groups with extremely different transcriptomic signatures, the authors developed a novel
unbiased bioinformatics algorithm (the diVIsive Shuffling Approach (VIStA)), which, through an iterative
approach, ended up maximising gene expression differences between groups [59]. In brief, as shown in
figure 7a, the VIStA method is as follows. 1) The algorithm first randomly partitions the available patients
(n=140 in this case) into three groups of comparable size, compares gene expression of groups 1 and 2 and
keeps group 3 as a reservoir. 2) It randomly swaps (shuffles) one patient from group 1 (or 2) with another
one from the reservoir (group 3), and differential gene expression is compared again. If the new number of
differentially expressed genes increases, the swap is accepted, if not it is rejected. 3) Step 2 is iterated until
the number of differentially expressed genes reaches a plateau, generally after approximately 1000 attempted
swaps. At this point, the resulting groups 1 and 2 include patients with the maximal gene expression
differences [59].

The results of the first approach, i.e. the comparison of differentially expressed genes in the extreme
quartiles of the clinical phenotypes defined a priori by COPD experts, failed to identify any difference,
except for the severity of airflow limitation, where 6049 differentially expressed genes were identified [59],
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Compensatory responses initially mitigate damage, but eventually, if chronic or exacerbated, they may become deleterious
themselves. Reproduced from [10] with permission from the publisher.

indicating that mild/moderate and severe/very severe COPD are associated with significantly different
transcriptomic signatures in sputum. The results of the reverse approach using VIStA showed that, after
about 500 VIStA runs, the severity of airflow limitation, this time in combination with the amount and
severity of emphysema present, was again the most important hub of the network (fig. 7b) [59].
Interestingly, however, the investigators also observed that age, BMI, exercise capacity, chronic bronchitis,
some inflammatory biomarkers (IL-6, IL-8 and SP-D) and some sputum findings (high number of
neutrophils and low number of lymphocytes) provide further discriminant power [59]. In summary, the
results of the study by MENCHE et al. [59] illustrate the potential of systems biology and network medicine to
address the complexity of chronic respiratory diseases like COPD. Specifically, they demonstrate that mild/
moderate versus severe/very severe COPD are associated with different sputum transcriptomic