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ABSTRACT Pulmonary artery smooth muscle cells (PASMC), in pulmonary arterial hypertension (PAH),

contribute to obliterative vascular remodelling and are characterised by enhanced proliferation, suppressed

apoptosis and, a much less studied, increased migration potential. One of the major proteins that regulate

cell migration is focal adhesion kinase (FAK), but its role in PAH is not fully understood. We hypothesised

that targeting cell migration by FAK inhibition may be a new therapeutic strategy in PAH.

In vivo, inhalation of FAK-siRNA (n55) or oral delivery of PF-228 (FAK inhibitor PF-573 228; n55)

inhibited rat monocrotaline induced PAH, improving the haemodynamics, vascular remodelling (media

thickness), and right ventricular hypertrophy. In vitro, FAK was activated in PAH human lungs (n58) or

PASMC when compared to those form healthy subjects (Western blot, n55), in a Src-dependent manner, as

it was reversed by the specific Src inhibitor PP2. The degree of FAK phosphorylation at Y576 correlated

positively with pulmonary vascular resistance in PAH patients. FAK inhibition (siRNA, PF-228 and PP2) in

PAH-PASMCs induced a fivefold increase in apoptosis (percentage of terminal deoxynucleotidyl transferase

dUTP nick end labelling), a 2.5-fold decrease in proliferation (%Ki67), an 18% decrease in cell migration

(colorimetric assay) and a 50% decrease in cell invasion (wound healing).

Suppressing PASMC migration by FAK inhibition inhibits PAH progression and may open a new

therapeutic window in PAH.
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Introduction
Although the earliest lesion in pulmonary arterial hypertension (PAH) remains unknown, when fully

expressed the disease is characterised by a proliferative and anti-apoptotic diathesis in many of the cells in

small pulmonary arteries, including pulmonary artery endothelial cells (PAECs), pulmonary artery smooth

muscle cells (PASMCs) and (myo)fibroblasts, as well as remodelling of the extracellular matrix. Eventually,

there is obliteration of the pulmonary arterial lumen, increasing pulmonary vascular resistance, right

ventricular failure and early death.

The pathogenesis of PAH is multifactorial and has fundamental similarities with cancer as PASMCs adopt a

pro-proliferative, pro-survival, invasive phenotype [1–3]. In some patients, there is a genetic predisposition

due to heterozygous mutations in the bone morphogenetic type II receptor (BMPR-II) leading to an

impaired function of SMAD (mothers against decapentaplegic homolog) pathways [4, 5] and increased p38/

MAPK (mitogen-activated protein kinase) activation [6, 7]. p53, p21, p27 and survivin are all tumour

suppressor/oncogenic proteins that have also been implicated in PAH [1, 8-12]. We recently showed the

critical role of the oncogenic axis c-Src (v-src sarcoma Schmidt-Ruppin A-2 viral oncogene homolog)/

STAT3 (signal transducer and activator of transcription 3)/Pim-1 (provirus integration site for Moloney

murine leukaemia virus 1), accounting for increased expression and activation of the transcription factor

NFAT (nuclear factor of activated T-cells) [13–15] and explaining several recognised features of PAH-

PASMCs including: 1) downregulation of the voltage-gated K+ channel 1.5 (Kv1.5), which depolarises

PASMCs, increasing intracellular Ca2+ ([Ca2+]i), and promoting proliferation); and 2) mitochondrial

membrane potential (DYm) hyperpolarisation and inhibition of mitochondria-derived reactive oxygen

species (mROS) generation, both of which suppress apoptosis [16]. We also demonstrated that STAT3

sustains its own activation through a positive feedback loop involving Src and the microRNA miR-204 [14].

Focal adhesion kinase (FAK) and Src are cytoplasmic non-receptor tyrosine kinases that have been

implicated in cancer. FAK and Src both integrate signals coming from several signalling pathways, including

the extracellular matrix (ECM)/integrins [17], growth factors [18, 19], G-protein coupled receptor (GPCR)

[20] and signals from the cytoskeleton [21, 22]. These upstream signals lead to FAK and Src

autophosphorylation (on Y397 and 418, respectively) and subsequent formation of a complex, promoting

Src-dependent FAK activation by phosphorylation on additional sites [23, 24]. Hence, FAK functions as a

signalling hub and is involved, to some degree, in most of the signal transduction processes that orchestrate

cell differentiation, growth, survival, adhesion, invasion and migration, involving several pathways like STATs

(signal transducers and activators of transcription) [25], MAPK, Rho GTPase/RhoA [26] or paxillin [27].

FAK upstream and downstream signals have been found to be activated in PAH [28], and the implication of

migration processes in the pathogenesis of the disease has been suggested, but the exact role of FAK and the

effects of its inhibition in PAH have not been adequately studied. FAK inhibition in cancer has shown

promise in terms of effectiveness and toxicity in early phase trials [29]. Thus, we hypothesised that targeting

migration by FAK inhibition would be beneficial in PAH as well.

Materials and methods
All the experiments were performed with the approval of the Laval University Ethic and Biosafety

Committee. The investigation conforms to the Guide for the Care and Use of Laboratory Animals published

by the US National Institutes of Health [30] and the principles outlined in the Declaration of Helsinki [31].

Cell culture
PAH-PASMCs were isolated from ,1500 mm in diameter small pulmonary arteries from two males with

idiopathic PAH (iPAH) (aged 31 and 48 years) from lung transplant [1]. Both patients had right

catheterisation that confirmed pulmonary hypertension (mean pulmonary arterial pressure (PAP)

.25 mmHg at rest). Five control PASMC cell lines (three males aged 45, 21, and 64 years and two

females aged 17 and 35 years) were purchased (Cell Application group, San Diego, CA, USA). All PASMC

cell lines were grown in high-glucose DMEM media supplemented with 10% FBS (Gibco, Invitrogen,

Burlington, ON, Canada) and 1% antibiotic/antimytotic (Gibco, Invitrogen, Burlington, ON, Canada) [32].

All cells were used until the fifth passage.

Cell treatments
siRNA (from AMBION, Austin, TX, USA) were transfected at 20 nmol?L-1 final concentration with calcium

chloride [13]. After 24 h, the medium was changed and experiments were performed 48 h after the

beginning of the transfection. PP2 and PP3 were dissolved in DMSO and applied, for 48 h, at a final

concentration of 10 mM. PF-573 228 (PF-228), an FAK inhibitor (a gift from Pfizer, Pointe-Claire/Dorval,

QC, Canada) as a gift as was dissolved in methanol and a final concentration of 10 mM was applied for 48 h.
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In vivo experiments
250–350 g Sprague-Dawley rats were injected subcutaneously with 60 mg?kg-1 of monocrotaline (MCT)

(n520). Intratracheal nebulisation of 1 nmol siSCR (Ambion, Austin, TX,) (n55) and 1 nmol siFAK

(Ambion) (n55) were given on day 18, once pulmonary hypertension was established as previously

described [13]. Freshly prepared PF-228 was administered by gavage (n55) twice a day at a concentration

of 30 mg?kg-1 per day.

Statistics
Data are presented as mean¡SEM. For comparison between two means we used a paired t-test. For

comparison between more than two means we used a one-way ANOVA followed by a Tukey post hoc test.

Further details can found in the online supplementary material.

FAK inhibition in vivo inhibits MCT-induced PAH
Rats were injected, subcutaneously, with 60 mg?kg-1 MCT-PAH and disease progression and exercise

capacity were followed noninvasively with Doppler echocardiography and standard treadmill tests. After

PAH was established (decreased pulmonary artery acceleration time (PAAT) at day 18, as previously

described [13]), FAK versus scramble siRNAs (1 nmol) were selectively delivered once into the lung by

intratracheal nebulisation [16]. PF-228 was administered by gavage twice a day (30 mg?kg-1 per day). Two

weeks later, rats were anesthetized and PA pressures were measured in close-chest rats, using a telemetry

catheter inserted in the right jugular vein.

FAK inhibition was associated with lower PAP (20¡1 mmHg, n55; p,0.05) compared to siSCR treated

rats (40¡1.5 mmHg, n55; p,0.05) (fig. 1a). Pressures were also lower after treatment with PF-228,

(25¡1.5 mmHg, n55; p,0.05). Hearts were harvested and right ventricle (RV) hypertrophy (RV weight/

left ventricle (LV) + septum weight ratio) was decreased by 20% in PF-228 and siFAK-treated rats,

compared to vehicle (water) and siSCR-treated rats, respectively, (n55 in each group; p,0.05) (fig. 1b).

The same effect on RV hypertrophy was observed with the two therapeutic interventions despite a different

effect on the level of PAP.

This may be due to the fact that on the one hand PF-228 was administered systemically and may have some

direct effects on RV, while on the other hand the siFAK was administered in a more specific manner,

perhaps achieving more robust effects on the pulmonary vasculature, while affecting RV hypertrophy only

indirectly.

In order to measure the distal extension of pulmonary arterial muscularisation in vivo, we measured the

percentage of muscularisation in arteries ,50 mm (fig. 1c). FAK inhibition by siRNA or PF-228 reduced the

percentage of fully muscularised arteries and increased the percentage of nonmuscularised arteries in

comparison to MCT-PAH+siSCR rats or vehicle.

By following the progression of the disease noninvasively with treadmill test and echocardiography during

the 2 weeks of treatment (fig. 1d–f), we determined that the therapeutic intervention completely inhibited

the progression of the disease, stopping the decrease in PAAT values and the increase in RV hypotrophy,

which progressed in the MCT-PAH groups, while it did not reverse the disease or normalised the measured

parameters.

FAK is activated in PAH-PASMCs and its full kinase activation is dependent on Src kinase activity.

In order to study more in depth the role of FAK in PAH pathogenesis, we performed in vitro studies with

cultured PASMCs isolated from control and PAH patients. We studied FAK’s phosphorylated state, using

immunostaining and Western blots, and we focused on two important phosphorylation sites that are critical

for the function of FAK: 1) FAK phosphorylation on residue tyrosine 397 (PY397-FAK), a known result of

FAK autophosphorylation and a facilitator of FAK’s interaction with Src [24, 25]; and 2) PY576-FAK, which

is located within the kinase domain and responsible for full kinase activity [33]. Both PY397-FAK and

PY576-FAK residues were phosphorylated with a twofold increase in PAH-PASMCs compared to control-

PASMCs (fig. 2). Interestingly, PY397 appeared to be cytosolic, while PY576 was preferentially located

in nuclei (online supplementary material fig. S1). To verify that Y576 phosphorylation of FAK depends

on Src kinase activity, we treated PAH-PASMCs with the Src inhibitor PP2 or its inactive analogue PP3.

Effective Src inhibition by PP2 (i.e. decreased phophorylation on tyrosine 418, PY418-Src) was associated

with decreased PY576-FAK but not PY397-FAK, compared to PP3, thereby confirming that Y576

phosphorylation depends on Src activation, while PY397-FAK does not (fig. 2).

FAK has been described to promote an open and active Src conformation, resulting in a sustained Src

activation. In order to study if FAK plays a role in Src activation in PAH, we used a silencer RNA directed

against FAK (siFAK 20 nM) and the pharmacological FAK inhibitor PF-228 (10 mM) [34]. FAK inhibition
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by both siRNA and PF-228 reduced Src phosphorylation on Y418, suggesting that the cooperation between

the two partners is a part of the process resulting in signal transduction in PAH (fig. 2 and online

supplemental fig.1b).

We then studied, by immunostaining, the state of FAK phosphorylation on the Y576/577 (PY576-FAK) on

lung sections from four control patients and four PAH patients (online supplemental table S1). We found

a twofold increase in PY576-FAK in PAH-patients compared to controls (online supplemental fig.2).

Moreover, the increase in PY576-FAK paralleled the increase in pulmonary vascular resistance in the

patients with PAH, implying a positive correlation with disease progression.

Similar to the experiments with human tissues, in our rat model of PAH, we used both immunostaining and

immunoblots and showed that FAK was aberrantly activated with a threefold increase in PY397 and a

fourfold increase in PY576, compared to control rats (supplemental figs 3 and 4). Our therapeutic
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FIGURE 1 Focal adhesion kinase (FAK) inhibition by intratracheal nebulisation of siRNA or gavage with PF-228 (FAK inhibitor PF-573 228) reverses
monocrotaline pulmonary arterial hypertension (MCT-PAH). Intratracheal nebulisation of 1 nmol siSCR (n55) and 1 nmol siFAK (n55) were given on day 18,
once pulmonary hypertension had been established. Freshly prepared PF-228 was administered by gavage (n55) twice a day at the concentration of 30 mg?kg-1

per day. a) Invasively, mean pulmonary arterial pressure (PAP) (n55 per group) measured by right catherisation in closed chest rats, were decreased by FAK
inhibition compared to MCT-PAH and MCT-PAH+siSCR. b) Right ventricle (RV) hypertrophy (n55 per group), measured by RV weight/left ventricle
(LV)+septum weight ratio, were also significantly improved by FAK inhibition. c) Moreover, in keeping with the inhibition of cell motility associated with FAK
inhibition, the percentage of fully muscularised arteries was decreased while the percentage of nonmuscularised arteries was increased with FAK inhibition
compared to MCT-PAH or MCT-PAH+siSCR. The effects of FAK inhibition by either siFAK or PF-228 were studied, noninvasively, by d) exercise capacity on a
treadmill (n55 group) and echocardiography Doppler, and FAK inhibition improved the distance travelled on the treadmill; increase the e) pulmonary
acceleration time; and decrease f) the RV free-wall thickness. *: p,0.05; **: p,0.01; ***: p,0.001.
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interventions in this model, both PF-228 gavage and siFAK intratracheal nebulisation, were able to

significantly decrease this inappropriate FAK activation (supplemental figs 3 and 4).

FAK inhibition decreases STAT3 activation in PAH-PASMCs
We previously described that Src activation is associated with activation and nuclear translocation of the

transcription factor STAT3 (i.e. increased phosphorylation on tyrosine 705, PY705-STAT3). In order to

study whether FAK is implicated in signal transduction through STAT3, we measured the level of nuclear

PY705-STAT3 in PASMCs-PAH treated with PF228 and siFAK. Both PF-228 and siFAK decreased nuclear

PY705-STAT3 levels compared to vehicle-treated and scrambled RNA-treated PAH-PASMCs (fig. 3a), a

decrease that approaches the level seen in the normal control. We also found that STAT3 activation (level of

PY705-STAT3 by Western blot and nuclear translocation by immunofluorescence) was decreased in distal

PAs after FAK inhibition in vivo with siFAK or PF-228 (supplemental fig.3).

FAK inhibition decreases the PAH-PASMCs migratory potential
We then studied the effect of FAK inhibition on PASMC motility. PASMCs migration was studied using a

modified Boyden chamber as described in the methods section. PAH-PASMCs had increased motility levels

(OD52.75¡0.3, fig. 4a) compared to control-PASMCs (OD52.1¡0.7, fig. 4a). FAK inhibition by siRNA

in PAH-PASMCs caused a 18% decrease in migration (OD 2.2¡0.7 versus 2.7¡1.2 for scramble-

transfected cells, fig. 4a). Similar results were obtained with PF228. These results show directly that FAK is

important in the enhancement of PASMCs motility in PAH.

FAK and STAT3 inhibition decreases wound healing response in PAH-PASMCs
We then investigated the effect of FAK inhibition on PASMCs invasion by standard in vitro wound healing

assays (fig. 4b). As STAT3 has been previously implicated in smooth muscle cells invasion [35, 36], we also

performed this experiment in the presence of STAT3 silencer RNA.

After 24 h, PAH-PASMCs exhibited a better response along the wounded edge margin than the control

PASMCs. PAH-PASMCs migrated into the wounded area and completely filled it, as shown by the fact that
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the number of cells in the wound area increased by almost twice as much when compared with the control-

PASMCs (fig. 4b). PAH-PASMCs transfected with FAK-siRNA exhibited only a limited response along the

wound edge margin and did not completely repopulate the open space compared to the scrambled treated

cells (fig. 4b). Similar results were obtained with wound-healing assays using PF-228 and PP2 (Src-

dependent FAK inhibition) when compared to PAH-PASMCs and PP3, respectively. These results

demonstrate the critical role of the signalling hub FAK in the enhanced wound-healing response seen in

PAH-PASMCs. They also show that FAK inhibition is effective in restoring a normal wound-healing

response, decreasing invasion by 50% and at a level similar to that of the control cells. Interestingly, STAT3

also decreased PAH-PASMC motility, suggesting again a strong cooperation between STAT3 and Src/FAK.
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PY576-FAK is localised in focal adhesion point and in the nucleus, and is associated with actin
reorganisation
The ability of Src/FAK/STAT3 to decrease the aberrant motility of PAH-PASMCs was further studied using

immunofluorescence. FAK regulates focal adhesion turnover required for efficient cell mobility [37] by

enhancing paxillin phosphorylation and subsequent actin fiber (F-actin) formation [38]. F-actin re-

organisation was imaged using the Texas Red-phalloidin dye (Invitrogen, Burlington, ON, Canada) and

antibodies against Paxillin were used to image focal adhesion points. We also stained with an antibody

against PY576-FAK in order to identify its localization during cell motility. PAH-PASMCs were

characterized by reorganization of the actin cytoskeleton and formation of lamellipodia, whereas control

PASMCs only showed small actin protrusions (fig. 5). PY576-FAK was increased in PAH-PASMCs, and

although it was present at focal adhesion points, it exhibited high levels in the nucleus as well. FAK

inhibition by siRNA or PF228, and Src inhibition by PP2, largely abolished actin filament assembly and

formation of typical focal adhesion plaques (as shown by Paxillin expression and lamelipodium formation),

although small actin protrusions were still observed. Nuclear intensity of PY576-FAK was decreased by

siFAK, PF228, siSTAT3 and PP2 compared to appropriate controls siSCR and PP3, confirming a strong

cooperation between Src, STAT3 and FAK. Nonetheless, the exact function of nuclear PY576-FAK in PAH is

still unknown.

FAK inhibition decreases PAH-PASMCs proliferation and resistance to apoptosis
Since FAK activation was previously associated with increased proliferation and resistance to apoptosis in

SMCs [39, 40], we studied the ability of FAK inhibition to reverse the PASMCs hyperproliferative and

apoptosis-resistant phenotype. PASMCs were grown in media supplemented with 10% fetal bovine serum

(FBS), a condition known to promote proliferation [16, 32]. We found that FAK inhibition by either

siRNA, PF-228 or a PP2-dependent Src inhibition in PAH-PASMCs decreased by 2.5-fold the number of

Ki67 positive cells and by twofold the number of proliferating cell nuclear antigen-positive cells (PCNA)

(fig. 6a and b) compared to controls, normalising PAH-PASMCs proliferation rates.

To study the effect of FAK inhibition on the mitochondrial membrane potential (DYm) (an index of the

threshold for mitochondrial-dependent apoptosis), we used tetramethylrhodamine methyl-ester (TMRM)

imaging in live PAH-PASMCs transfected with FAK siRNA, siSCR or treated with PF-228, PP2 or its

inactive analogue PP3. FAK inhibition caused a significant DYm depolarisation (fig. 6c and d, and online

supplement fig. 6). In keeping with these data, FAK inhibition by siRNA in serum-starved PAH-PASMCs

(0.1% FBS) induced a fivefold increase in apoptosis, while PF228 or PP2 induced a fourfold increase (fig. 6c

and d).

FAK inhibition in vivo is associated with decreased PASMCs proliferation and increased apoptosis in
distal pulmonary arteries, leading to decreased vascular remodelling
FAK inhibition (with siFAK or PF-228) in vivo was associated with increased apoptosis (terminal

deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)) and decreased proliferation (Ki67

expression) of smooth muscle actin-positive cells in resistance pulmonary arteries (PAs) (fig. 7a). This was

associated with a reversal of media hypertrophy in distal PAs (fig. 7a and d). These therapies did not appear

to decrease proliferation and apoptosis in vW-Factor positive cells (Supplemental Fig. 7), suggesting that

their effects may be specific to PASMC. Taken together with the effects of these therapies on

muscularization of the PAs in the same animals (fig. 1c) these data show that FAK inhibition can inhibit

vascular remodelling in PAH by a number of mechanisms including effects on proliferation, apoptosis and

cell motility.

Discussion
Here we demonstrated for the first time that FAK plays a critical role in PAH pathogenesis by regulating

proliferation, resistance to apoptosis, migration and invasion of PASMC, all critical determinants of the

obliterative vascular remodelling that characterises this disease. FAK phosphorylation on Y397 has been

described in PAH, as a consequence of an increased expression of integrin [41]. Here we show that FAK is

also phosphorylated on Y576, in a Src-dependent manner, thus allowing activation of many other signalling

pathways, including STAT3. We also found that STAT3 phosphorylation is decreased by FAK inhibition

and that STAT3 activation participates in PAH-PASMCs migration and wound healing. While STAT3 role

in cell motility were described several times in cancer, it is the first time that this has been shown in vascular

smooth muscle cells.

STAT3 is known to regulate cell motility through its transcriptional activating functions [42], but there is

also evidence that STAT3 (non-tyrosine-phosphorylated form) mediates cell migration by regulating

microtubule polymerisation [43–45]. In addition, phosphorylated STAT3 has also been found to localize
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within focal adhesions, interacting with focal adhesion proteins and contributing to ovarian cancer

cell motility [46].

We were particularly interested in PY576-FAK in this study as it reflects maximal FAK kinase activity [33].

Phosphorylation of this residue is particularly enhanced by laminar shear stress [47]. This is consistent with

our model, in which the increase in pressure creates cyclic stretch and shear stress on the vessel wall [48, 49].

Moreover, FAK activation seems to be particularly enhanced by mechanical stress as Src/FAK axis activation

has been associated with a 30 mmHg increase in systemic pressure [50]. This suggests that the increase in

pressure in PAH might be implicated in the maintenance and amplification of FAK activation, leading to

the worsening of PAH.

Interestingly, we found that PY576-FAK is also localised in the nucleus, while PY397-FAK is mostly

cytoplasmic. It has been demonstrated that p53 regulation, which is protective against PAH [8] and

downregulated in MCT-PAH [12], is dependent on FAK nuclear translocation. Indeed, FAK inactivates p53

in a kinase-independent manner via its FERM domain (F for 4.1 protein, E for ezrin, R for radixin and M for

moesin), acting as a scaffold protein to enhance Mdm2-dependent p53 ubiquitination and degradation [51–54].

Here we focused on PASMCs as the less studied cell motility was our primary endpoint. However, there is

evidence to suggest that FAK may also be activated in PAH pulmonary artery endothelial cells (PAEC). For

example, in PAH-PAEC there is increased STAT3-dependent proliferation, increased migration, and

decreased apoptosis compared with cells derived from healthy control lungs [55], much like in PASMC.

STAT3 hyperactivation has also been found in PAECs following MCT injection in rats, leading to PAECs

proliferation [56]. These data are in keeping with a potential activation of FAK in PAEC. Indeed, in a

different PAH model (SU5416+hypoxia) Copper restriction (an approach that has been shown to inhibit

FAK in emphysema models [57]) reversed PAH by inhibiting PAEC proliferation (although the authors did
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not directly study FAK in this work). However in our model we showed that FAK inhibition did not affect

PAEC apoptosis or proliferation. Because of the significant differences between these models, the role of

FAK in PAEC remains unclear and more studies are needed. On the other hand, the beneficial effects of

Copper inhibition on another PAH model, further supports the notion that FAK may be an important

therapeutic target in PAH.

All potential PAH therapies need to be tested on the RV as this tissue is the most important of all in terms of

the morbidity and mortality of PAH [58] and a limitation of our work is that we did not study the effects of
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FAK inhibitors directly on the RV. FAK has been shown to play a role in cardiomyocyte hypertrophy, being

activated by either mechanical stress [59–61] (which causes a translocation of FAK in the cardiomyocyte

nucleus [62–64]) or agonists like ET-1 and Ang-II [65, 66]. Increased phosphorylation of FAK has also been

described in hypertrophied RV of rats after MCT injection [67]. Thus, more work is needed to discover the

direct effects of FAK inhibitors on RV function. Certainly, our data show that the effects of FAK inhibitors

on the RV (even when delivered systemically) were not detrimental overall, as they appear to improve the

exercise tolerance of the treated animals, a strong sign of an increase in the cardiac output.

The important work by MIZUNO at el. [57], showing that Copper deficiency and the resulting FAK inhibition

may promote emphysema, need to be taken into careful consideration in further translational work in PAH

with this class of therapies. Again, the fact that our treated animals exercised better after treatment of FAK

inhibitors, suggests that there were no significant effects on their lung function and gas exchange, at least

during this (admittedly short) treatment period. Our guarded optimism for the translational development

of FAK inhibitors is supported by the fact that several of them are now under early phase clinical trials for

cancer [68].
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