European Respiratory Society Annual Congress 2013

Abstract Number: 811

Publication Number: P1880

Abstract Group: 10.1. Respiratory Infections

Keyword 1: COPD - exacerbations **Keyword 2:** Viruses **Keyword 3:** Inflammation

Title: Sputum neutrophil mediators in experimental rhinovirus infection in COPD

Dr. Patrick 1650 Mallia p.mallia@imperial.ac.uk MD ¹, Dr. Joseph 1651 Footitt j.footitt@imperial.ac.uk MD ¹, Ms. Maria-Belen 1652 Trujillo-Torralbo m.trujillo-torralbo@imperial.ac.uk ¹, Dr. Kazuhiro 1653 Ito k.ito@imperial.ac.uk ², Prof. Ian 1654 Adcock ian.adcock@imperial.ac.uk ², Prof. Peter 1655 Barnes p.j.barnes@imperial.ac.uk MD ², Dr. Onn Min 7700 Kon Onn.Kon@imperial.ac.uk MD ¹ and Prof. Sebastian 1656 Johnston s.johnston@imperial.ac.uk MD ¹. ¹ Airway Disease Infection Section, Imperial College, London, United Kingdom, W2 1PG and ² Airway Disease Section, Imperial College, London, United Kingdom, SW3 6LY .

Body: Background. Acute exacerbations of COPD (AECOPD) are associated with neutrophilic airway inflammation. Inhibition of TNF- α was recently found to be ineffective in AECOPD. We used experimental rhinovirus (RV) infection to investigate neutrophil chemokines in AECOPD. Methods. 9 COPD subjects, 9 smokers (SMK) and 8 non-smokers (NS) were successfully infected with RV. Induced sputum (IS) was collected prior to infection and on days 3, 5, 9, 12, 15, 21 and 42 post-infection. Levels of IL-8, GM-CSF, IL-1 β , TNF- α , GRO- α and MMP-9 were measured in IS supernatants using the Meso Scale Discovery (MSD®) platform. Results. MMP-9, IL-8, GM-CSF, IL-1 β , and TNF- α in IS increased significantly from baseline following RV infection in the COPD group but not in the SMK or NS, GRO- α was not induced. Peak levels correlated with inflammatory cell counts, neutrophil numbers and neutrophil elastase (NE) in IS in the COPD subjects.

	Sputum NE	· ·	Sputum Neutrophils	TNF-α	IL-8	GM-CSF	IL-1β
TNF-α	P=0.0007, r=0.93	P=0.025, r=0.73	P=0.0016, r=0.77	Х	INS	,	P=0.0072, r=0.82
IL-8	r=0.68	1	P=0.0072, r=0.82	NS	Х	INS	P=0.0072, r=0.82
GM-CSF	1	P=0.016, r=0.77	IP=0 02 r=0 /5	P=0.0025, r=0.87	NS	Х	NS
IL-1β	P=0.03, r=0.72	NS	IP=0.036 r=0 /	ĺ	P=0.0072, r=0.82	NS	Х
MMP-9						NS	

	P=0.02,	P=0.016,	P=0.025,	P=0.0025,	P=0.049,	P=0.03,	
	r=0.75	r=0.88	r=0.87	r=0.87	r=0.87	r=0.72	

Conclusions. IL-8, GM-CSF, IL-1 β , and TNF- α , but not GRO- α , are all involved in neutrophilic inflammation in AECOPD. Inhibition of single cytokines is unlikely to be successful in AECOPD. High levels of the protease MMP-9 are induced so NE inhibition may also be unsuccessful. Therapeutic strategies that target multiple chemokines or multiple proteases are likely to be required in AECOPD.