European Respiratory Society Annual Congress 2013

Abstract Number: 4628 Publication Number: 3494

Abstract Group: 4.1. Clinical respiratory physiology, exercise and functional imaging **Keyword 1:** Lung function testing **Keyword 2:** Gas exchange **Keyword 3:** No keyword

Title: Impact of the choice of CO and NO conductance values on the interpretation of CO and NO diffusion capacities

Prof. Herve 30315 Guenard guenardherve@hotmail.com MD¹, Mr. Christian 30316 Kays christian.kays@u-bordeaux2.fr¹, Ms. Sophie 30317 Lalande sophie.lalande@ulb.ac.be² and Dr. Jean Benoit 30318 Martinot martinot.j@scarlet.be MD³.¹ Physiology, Universite Bordeaux 2, Bordeaux, France, F33600 ; ² Laboratory of Cardiorespiratory Physiology, Universite Libre De Bruxelles, Bruxelles, Belgium and ³ Pneumologie Et Explo FONCT Respiratoires, Clinique Ste Elisabeth, Namur, Belgium .

Body: Diffusion tests with NO and CO give smaller membrane conductance values (Dm) than morphometry. This discrepancy is likely due to the uncertainty surrounding the estimates for θ_{NO} and θ_{CO} . A method was devised to estimate θ_{NO} and θ_{CO} in healthy subjects by measuring NO and CO transfer with either 21 or 15% FIO₂ making the assumption that the latter mixture would not change Dm and Vc. Vc and Dm/Vc were calculated using the usual multi step oxygenation method and the NO/CO method. From the identity of these 2 estimations θ_{NO} and θ_{CO} values could be derived. 10 subjects aged between 20 and 68 years performed the measures (Hyper'compact Medisoft Dinant, Be). They breathed either air or a mixture with 15% O₂ and performed then the single breath maneuver with the usual tracers. FEO₂ was measured and PcapO₂ was calculated. The target finite value for θ_{NO} of 4.5 (mmHg min)⁻¹ was that recommended by Borland et al. Seven θ_{CO} vs PO₂ equations were tested, among them a mix of Holland and Forster equations (HF). With (1) and (2) corresponding to 21% and 15% FI O₂ respectively: $\Theta_N o = 1.97/[1/\Theta co_1 - 1.00]$ $(1/\Theta co_1 - 1/\Theta co_2)^*(1/TL_{CO(1,2)} - 1.97/TL_{NO(1,2)})/(1/TL_{CO1} - 1/TL_{CO2})]$ None Θ_{NO} value was compatible with an infinite or high θ_{NO} value. The best compromise was obtained with the HF equation (1/ θ_{CO} =1.19 + 0.0053 PO₂), $\Theta_N o=2.1\pm5.3$ (mmHg min)⁻¹. The target value of 4.5 was within the confidence interval (t =2). Dm would be twofold the previous value in the range of the morphometric values. Adopting these results would change the interpretation of NO and CO transfer, DL_{NO} would depend for a half of the membrane and blood components of the transfer, DL_{CO} would depend for 80% of the blood component.