Abstract Group: 4.3. Pulmonary Circulation and Pulmonary Vascular Disease

Keyword 1: Pulmonary hypertension Keyword 2: Inflammation Keyword 3: Immunology

Title: Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension

Dr. Frederic Perros frederic.perros@gmail.com 1,2,3,4,5, Dr. Peter Dorfmuller peter.dorfmuller@u-psud.fr MD 2,3,4,5, Dr. David Montani davidmontani@gmail.com MD 2,3,4,5, Prof. Dr. Hamida Hammad hamida.hammad@ugent.be 1, Dr. Wim Waelput wim.waelput@uzbrussel.be MD 6, Dr. Barbara Girerd barbara.girerd@abc.aphp.fr 2,3,4,5, Mr. Nicolas Raymond ncsray@gmail.com 2,4,5, Dr. Olaf Mercier o.mercier@ccml.fr MD 2,4,5, Dr. Sacha Mussot sachamussotmd@gmail.com MD 2,4,5, Dr. Sylvia Cohen-Kaminsky sylvia.cohen-kaminsky@u-psud.fr 2,3,4,5, Prof. Dr. Marc Humbert marc.humbert@abc.aphp.fr MD 2,3,4,5 and Prof. Dr. Bart Lambrecht bart.lambrecht@ugent.be MD 1.

1 Laboratory of Immunoregulation and Department of Respiratory Medicine, University Hospital, Ghent, Belgium, B-9000; 2 Faculté de Médecine, Université Paris-Sud, Kremlin-Bicêtre, France, F-94276; 3 AP-HP, Centre National de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, Hôpital Antoine Béclère, Clamart, France, F-92140; 4 INSERM UMR-S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, LabEx LERMIT, Le Plessis Robinson, France, F-92350; 5 Research Department, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France, F-92350 and 6 Department of Pathology, University Hospital Antwerp, Edegem, Belgium, B-2650.

Body: Background: Idiopathic pulmonary arterial hypertension (IPAH) patients present circulating autoantibodies against vascular wall components. Pathogenic antibodies may be generated in tertiary (i.e. ectopic) lymphoid tissues (tLTs). Aims and objectives: To assess how frequent are tLTs in IPAH lungs as compared to controls and flow-induced PAH (Eisenmenger syndrome -ES-) and to identify local mechanisms responsible for their formation, perpetuation and function. Methods: tLTs composition and structure were studied by multiple immunostainings. Cytokines/chemokines and growth factor expression was quantified by real-time PCR and localized by immunofluorescence. The systemic mark of pulmonary lymphoid neogenesis was investigated by flow cytometry analyses of circulating lymphocytes. Results: As opposed to controls and ES, IPAH lungs contained perivascular tLTs, comprising B and T cell areas with high endothelial venules and dendritic cells. Lymphocyte survival factors, such as IL-7 and PDGF-A, were expressed in tLTs as well as the lymphorganogenic cytokine/chemokines, lymphotoxin-α/β, CCL19, CCL20, CCL21 and CXCL13, which might explain depletion of circulating CCR6+ and CXCR5+ lymphocytes. The presence of germinal center centroblasts, follicular DCs, activation-induced cytidine deaminase and IL21+PD1+ T follicular helper cells in tLTs together with CD138+ plasma cells accumulation around remodeled vessels in areas of Ig deposition argued for local immunoglobulin (Ig) class switching and ongoing Ig production. Conclusions: We highlight the main features of lymphoid neogenesis specifically in
the lungs of patients with IPAH providing new evidence of immunological mechanisms in the evolution of this fatal condition.