European Respiratory Society Annual Congress 2012 Abstract Number: 876 **Publication Number: 376** Abstract Group: 1.3. Imaging Keyword 1: Imaging Keyword 2: COPD - diagnosis Keyword 3: No keyword **Title:** MRI equilibrium signal mapping is a quantitative and reproducible alternative to CT for the estimation of lung density in COPD Weijuan 6001 Zhang weijuan.zhang@postgrad.manchester.ac.uk ^{1,2}, Penny 6080 Hubbard penny.hubbard@manchester.ac.uk ^{1,2}, Eva 6081 Bondesson eva.bondesson@semcon.com ³, Lars 6082 Wigström lars.wigstrom@astrazeneca.com ⁴, Simon 6083 Young simon.young1@astrazeneca.com ⁵, David 6084 Singh dsingh@meu.org.uk ⁶, Josephine 6085 Naish josephine.naish@manchester.ac.uk ^{1,2} and Geoffrey 6086 Parker geoff.parker@manchester.ac.uk ^{1,2,7}. ¹ Imaging Sciences, School of Cancer and Imaging Sciences, The University of Manchester, United Kingdom; ² The Biomedical Imaging Institute, The University of Manchester, United Kingdom; ³ Semcon Drug Development Consulting, Semcon Caran AB, Lund, Sweden; ⁴ Respiratory & Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden; ⁵ Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, United Kingdom; ⁶ Medicines Evaluation Unit, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom and ⁷ BiOxyDyn Limited, BiOxyDyn Limited, Manchester, United Kingdom. **Body:** In MRI, the equilibrium tissue magnetisation is proportional to tissue water density. This study aimed to explore the feasibility and reproducibility of mapping the signal (S_0) associated with the equilibrium magnetisation in the assessment of structural abnormalities in COPD. MR images were acquired in 12 COPD subjects twice within 1 week for T_1 and S_0 mapping. Lung S_0 was normalized by dividing by muscle S_0 to obtain a quantitative S_0 (qS_0). Matched CT slices were selected to calculate PD_{15} and $RA_{.950}$. Lung qS_0 maps were reproducible with reduced values seen in regions comparable to CT detected emphysema regions. The mean and 15^{th} , 50^{th} , 75^{th} percentile qS_0 showed strong correlations with PD_{15} and $RA_{.950}$. Equilibrium signal maps of MRI correlate strongly with CT density estimates, indicating that qS_0 may be a reproducible, non-invasive/-ionising measure for quantifying lung density changes in COPD. Table 1. Pearson correlation coefficient between lung qS_0 values and quantitative CT parameters | | Mean qS ₀ | 15 th centile qS ₀ | 50 th centile qS ₀ | 75 th centile qS ₀ | |------------------|----------------------|--|--|--| | PD ₁₅ | 0.930* | 0.847* | 0.938* | 0.911* | | Ī | BA ass | -0.907* | -0.830* | -0.900* | -0.892* | |---|-----------|---------|---------|---------|---------| | | · ·/~-950 | 0.007 | 0.000 | 0.000 | 0.002 | * p value < 0.01