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ABSTRACT: Obstructive sleep apnoea/hypopnoea syndrome (OSAHS) is a common condition

affecting ,2–4% of the middle-aged population. A hereditary component to the condition has long

been recognised but its genetic basis has been difficult to elucidate. Progress in determining the

genotype of OSAHS is hampered by the lack of a consistent definition of phenotype and the large

environmental influences on its expression. ‘‘Intermediate phenotypes’’, such as craniofacial

structure, obesity and upper airway control, have been utilised. Multiple gene polymorphisms

have been explored in association with the latter, as well as with the sequelae of OSAHS, such as

hypertension and increased insulin resistance. To date, two genome-wide scans have identified

potential regions that may be of interest in further defining the intermediate phenotypes. The

present paper focuses on human studies with an update of the most recent work in the area,

including a short discussion on methods of genetic studies.

KEYWORDS: Gene polymorphisms, genetics, genotype, phenotype, sleep apnoea

O
bstructive sleep apnoea/hypopnoea syn-
drome (OSAHS) affects up to 4% of the
adult population [1]. Its pathogenesis

involves the obstruction of the upper airway
during sleep, resulting in repetitive breathing
pauses accompanied by oxygen desaturation and
arousal from sleep. The syndrome is further
defined by the presence of diurnal sleepiness
and cognitive impairment. OSAHS occurs
throughout the entire lifespan, from neonates to
the elderly [2].

In adults, sleep-disordered breathing (SDB; a
repetitive upper airway obstruction during sleep
alone), is prevalent within the population. SDB
increases with age and is poorly associated with
daytime sleepiness or other symptoms of
OSAHS. Up to 20% of the population is thought
to have SDB at any one time [3–5].

The sequelae of OSAHS include increased risk of
driving accidents, cognitive impairment, and cere-
brovascular and cardiovascular morbidity and

mortality. OSAHS is an independent risk factor
for diurnal hypertension [6, 7] and epidemiologi-
cally has been implicated as a risk factor for stroke
(odds ratio (OR) 1.6), and ‘‘all cause’’ cardiovas-
cular events (OR 2.87–3.17) [8, 9]. Thus, it represents
a significant public health concern. The Wisconsin
Sleep Cohort Study, by prospectively investigating
the association between OSAHS and the develop-
ment of hypertension, found that SDB was accom-
panied by a substantially increased risk of
developing hypertension [10]. Subjects with an
apnoea/hypopnoea index (AHI) of .15 events?h-1

had a three-fold increased risk of developing new
hypertension over a 4-yr period. Many mechanisms
may mediate this vasculopathy, including repeti-
tive hypoxaemia and hypercapnia, changes in
intrathoracic pressure that lead to increases in
blood pressure and elevated levels of circulating
catecholamines. Evidence is also mounting that
OSAHS contributes to the expression of metabolic
syndrome, increased insulin resistance and a
higher inflammatory state. The aetiopathogenesis
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of these sequelae of OSAHS will be discussed in subsequent
articles in the series.

THE PHENOTYPIC COMPLEXITY OF OSAHS
Heterogeneity of OSAHS
The key pathophysiological feature in OSAHS is the occurrence
of upper airway obstruction during sleep which does not occur
during wakefulness. However, the pathophysiology of OSAHS
cannot be seen in isolation as a dysfunction of upper airway
muscles alone, but as the consequence of a number of interrelated
pathologies and risk factors. The strongest risk factors for OSAHS
are obesity and ageing [11, 12]. Morbid obesity, defined as body
mass index (BMI) .30 kg?m-2, is present in 60–90% of patients
with OSAHS. Central obesity, characterised by a high waist/hip
ratio or increased neck circumference, is probably better
correlated with OSAHS. However, not all obese subjects snore
or have SDB [13].

OSAHS is more common in males and the risk of OSAHS is
higher in females who are obese and post-menopausal [14].
OSAHS is also associated with craniofacial abnormalities, with
jaw abnormalities being more important in thinner OSAHS
patients [15]. OSAHS has a hereditary component and is much
more prevalent in those with family members who have SDB
or the syndrome itself [16].

Additionally, race and certain congenital conditions, such as
Marfan’s syndrome, Down’s syndrome and the Pierre Robin
sequence, predispose to the development of OSAHS, as do
acquired conditions, such as acromegaly, hypothyroidism and
menopause.

Alcohol ingestion exacerbates OSAHS by reducing the activity of
the genioglossus muscle, thereby leading to upper airway
collapse [17]. Exacerbation of the condition can also occur as a
result of sedative use, sleep deprivation, tobacco use and sleeping
in the supine posture [18]. Reduced nasal patency, due to
congestion or anatomical defects, as well as respiratory allergies,
can also significantly contribute to OSAHS [19]. Overall, it has
been suggested that hereditary factors invoke 40% of the variance
in the occurrence of OSAHS in the population, with the rest
attributable to environmental factors [20].

Distinction must be made between adult and paediatric
OSAHS. Paediatric SDB may affect up to 3% of school-aged
children, with consequences very similar to those for adults
[21–24]. The most common cause of OSAHS in children is
related to enlargement of the tonsillar and adenoidal tissue,
with surgical removal usually resulting in significant improve-
ment. The role of obesity is somewhat controversial in
childhood OSAHS [25]. Additionally, congenital craniofacial
abnormalities, a well as abnormalities of brainstem control of
breathing, such as the PHOXB mutations, will result in
problems with breathing during sleep [26]. The present article
will focus on adult OSAHS.

Natural history and progression of OSAHS
Long-term cohort studies looking at the development and
progression of untreated OSAHS have not been performed.
Currently, the dominant paradigm suggests that the snoring
individual will progress to developing increased resistance of
the upper airways culminating in SDB and, finally, OSAHS.
However, there is no evidence to support this, apart from a few

small studies that have demonstrated a worsening of SDB over
variable periods of time [27, 28]. There have also been a small
number of studies of the cardiovascular consequences of
untreated OSAHS, which have shown increased mortality
from cardiovascular and cerebrovascular disease in those with
more severe SDB [9]. However, these studies are not controlled
for possible confounding factors, such as noncompliance with
other treatment and baseline cardiovascular disease severity;
no repeat studies of the patients were performed to show
whether the degree of oxygen desaturation and SDB had
worsened over time. Likewise, no studies have followed up
paediatric patients into adulthood to see whether SDB
improves, worsens or recurs after treatment. There is currently
no evidence to suggest that the majority of adult snorers
snored in childhood or adolescence. Lastly, the development
and characteristics of OSAHS in adults also vary as a function
of normal ageing [29]. The aetiology of the disease probably
changes due to changes in parapharyngeal fat pad deposition
[30], serotonergic dysregulation of brainstem respiratory
control (due to ‘‘wear and tear’’) [31] and age-related changes
in bony structures, such as edentulism [32]. Variations in
neuromuscular control of the upper airway become more
important in the elderly [33], and increased background
prevalences of cardiac and cerebrovascular disease increase
the likelihood of periodic breathing. The clinical phenotype of
OSAHS also changes. Older subjects report less daytime
sleepiness for a given level of OSAHS [34]. Furthermore,
hypotheses have been postulated suggesting that the develop-
ment of SDB with intermittent hypoxia may lead to ischaemic
preconditioning, which may act as a protective mechanism in
older subject [35]. Thus, SDB and OSAHS in the elderly are
unlikely to be equivalent to the same disorders that develop in
middle or young age.

CLINICO-PHYSIOLOGICAL PHENOTYPES OF OSAHS
Phenotype is the total physical appearance and constitution of
a living entity [36]. The genotype and environment create the
phenotype. Genotype, environment and random variation can
also contribute to phenotypic expression. Therefore, a pheno-
type is any detectable characteristic of an organism determined
by an interaction between its genotype and environment.
Phenotypic plasticity, the ability of an organism with a given
genotype to change its phenotype in response to changes in the
environment, may be applicable to OSAHS. Thus, a particular
genotype may express itself as a different phenotype at
different times and in response to different environmental
circumstances [37].

As discussed earlier, OSAHS can occur in a variety of
conditions. In order to be able to phenotype OSAHS, a possible
future classification might take the following into account:
1) physiological basis; 2) structural basis; and 3) evaluation of
daytime sleepiness.

In 1999, the American Academy of Sleep Medicine Task Force
developed the most widely accepted definition of OSAHS in
present use [38]. OSAHS severity is based on the severity of
daytime sleepiness and overnight monitoring of breathing, and
both are rated separately. Although this is a very practical
definition, it is not particularly useful when it comes to
phenotyping OSAHS, as there is no accounting for age or sex-
related changes; in addition, intermittent phenotypes are not
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taken into account. There are few normative data in the
population for the spectrum of sleep disordered breathing
without symptomatology and the results obtained in pheno-
typing, which include the number of obstructive events during
the night, are highly dependent on the technology used to
measure them. It has thus been postulated that OSAHS should
be broken down into intermediate phenotypes that could then
be assessed in terms of their relative contribution to the overall
phenotype. These include the craniofacial morphology, obesity
and susceptibility to sleepiness, as well as ventilatory and
upper airway control. However, we are still lacking in models
that would be able to pool these factors and then assess the
relative importance of the component parts in producing the
whole. Difficulty arises in distinguishing those variables
within the OSAHS phenotype that are central to the disease
process and those that are epiphenomena. As seen in
observational and epidemiological studies, various compo-
nents will have greater importance in some individuals with
OSAHS compared with others. The component phenotypes are
discussed in the following sections.

Craniofacial morphology
This is probably one of the most important heritable
determinants of OSAHS. Morphological features associated
with SDB include cranial base dimensions being more obtuse,
inferior displacement of the hyoid bone, macroglossia, adeno-
tonsillar hypertrophy, increase in lower facial height, a
retroposed maxilla and a short mandible [32]. The craniofacial
complex comprises a number of components interdependent
in growth patterns and closely linked, with the growth and
shape of one component influencing others. The process is
complex throughout embryogenesis and further growth from
childhood to adulthood [39]. Growth of the craniofacial
skeleton continues throughout adulthood and there is also
significant sexual dimorphism. For instance, women have
increased growth of the craniofacial skeleton with pregnancy
and other hormonal changes; mandibular orientation and
occlusal relationships also change throughout the life cycle
[39]. Environmental mechanisms play a strong role in
determining cranioskeletal growth. These include bad habits
such as thumb-sucking and abnormal tongue posturing,
nasopharyngeal disease, disturbed respiratory function (e.g.
mouth breathing), tumours, loss of teeth, malnutrition and
endocrinopathy [40]. Thus, environmental influences can
significantly alter the skeleton, thereby altering phenotypic
expression. Post-natal growth, head shape and facial profile
also possess certain characteristics that can affect breathing. On
reviewing the current knowledge in this area, mandibular
position and size were found to play the greatest role in
determining facial alignment and predisposition to SDB.
However, the number of studies looking at this particular
intermediate phenotype is very limited [41, 42]. Genes
involved in the embryogenesis, growth, development and
expression of the craniofacial complex are subject to very
complex gene–gene and gene–environmental effects and their
pathways are yet to be fully elucidated [43].

Obesity
Obesity is the most commonly identified risk factor for OSAHS.
Fat deposition results in a reduction in nasopharyngeal calibre
and if significant, can lead to hypoventilation due to reduced

chest wall compliance [44]. There is increasing evidence that
adipokines, such as leptin, may affect regulation of the
respiratory centre [45]. The heritability in BMI in large sample
sizes is thought to be between 25% and 40%; therefore, a strong
environmental influence is present [46]. Susceptibility to obesity
is largely genetic but a favourable environment must exist for its
phenotypic expression. Regulation of appetite and energy
expenditure is complex and redundant pathways are biased
towards weight gain. Information on obesity susceptibility genes
is updated regularly through the human obesity gene map [47]; to
date, .300 markers, genes and chromosomal regions have been
associated or linked with human obesity phenotypes. Only a few
single mutations directly linked to obesity have been found in
rare cases; there are no other genetic associations resulting from a
mutation affecting function or amount of gene product. The
support of cellular work is also lacking at the present time.

Sleepiness
Sleepiness, as a consequence of SDB, is required to define
OSAHS but does not necessarily correlate with it. There are
many instances of individuals who may have an AHI of 100
but deny sleepiness or impairment during the day. There
appears to be a differential susceptibility to somnolence among
individuals. Sleep is regulated by neuronal and humoral
mechanisms that are interdependent [48]. Interleukin (IL)-1
and tumour necrosis factor-a appear central to the sleep
activation pathways, and other sleep-inducing cytokines
include IL-10, IL-6, interferon, IL-2, IL-4, granulocyte-macro-
phage colony-stimulating factor, colony-stimulating factor and
fibroblast growth factor [49]. Many of these cytokines are
pleiotropic and also implicated in initiating or propagating the
sequelae of OSAHS, particularly inflammation [50].

Upper airway control
During sleep, an increase in upper airway activity leads to
snoring and upper airway obstruction, in turn leading to
arousal. Arousal activates the pharyngeal muscles and restores
airways patency, leading to more effective breathing. During
sleep, withdrawal of tonic excitation of the hypoglossal motor
neurones results in reduced firing of serotonergic medullary
raphe neurones and reduced firing of noradrenergic locus
coeruleus neurones. Molecular dissection techniques in recent
times have shown the 5-hydroxytryptamine (5HT)2A receptor
to be the predominant receptor subtype in hypoglossal motor
neurones [51]. Selective serotonin reuptake inhibitors (SSRIs)
have been trialled as a pharmacological therapy for increasing
upper airway tone but this has led to mixed results. Incomplete
responses have occurred despite increased genioglossal activ-
ity using electromyography in the awake state [52]. Until
upper airway pathophysiology is more completely defined,
this intermediate phenotype may continue to be elusive in
terms of genetic studies.

Ventilatory control
Genetic influences have been postulated to influence the
magnitude of the ventilatory response to hypoxia and
hypercapnia. There is a high degree of heritability of
peripheral chemoreceptor responses to hypoxia and hyperoxia
in monozygotic twins [53]. Healthy family members also share
reduced ventilatory responses to hypoxia. There have been a
large number of studies in patients with OSAHS and their
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family members in terms of hypercapnic and hypoxia
ventilatory responses, but the numbers have been very small
and the results have been conflicting (table 1). It is debatable
whether respiratory control problems are implicated in the
pathogenesis of OSAHS. Although several studies have shown
abnormalities of respiratory control, these have been shown to
reverse with the use of continuous positive airway pressure;
therefore, the changes may be secondary and may not
necessarily be a primary manifestation of the genotype in
terms of determining OSAHS.

Sequelae of OSAHS
Repetitive upper airway obstruction with attendant hypoxae-
mia and increased arousals has been shown to contribute to the
disruption of cardiovascular, metabolic and endocrine function
(these consequences will be discussed in greater detail in
future papers in the series). OSAHS is an independent risk
factor for diurnal hypertension and has been implicated as a
risk factor for first stroke, recurrent stroke and post-stroke
mortality [62]. Repetitive hypoxaemia due to SDB may play an
important role in systemic inflammation and may enhance the
development of atherosclerosis [63]. There is growing evidence
that cell and molecular mechanisms involving inflammatory
mediators are upregulated in patients with OSAHS [64]. A
genetic propensity towards increased pro-inflammatory cyto-
kine production may also exacerbate these effects [65].

OSAHS may also contribute towards the development of
metabolic syndrome. Hypercytokinaemia, hyperleptinaemia,
insulin resistance, hypertension and visceral obesity occur at
disproportionately high levels in the population with OSAHS
[66]. When obesity is controlled for, OSAHS has still been
shown to be highly significantly associated with hypercytokin-
aemia, high leptin levels, insulin resistance and hypertension
[67]. It has been somewhat easier to look at possible genetic
underpinnings to the development of sequelae in OSAHS and
this may potentially be useful in the future in order to monitor
variability of OSAHS and predict response to treatment.

ANIMAL MODELS OF OSAHS
Whether animal models accurately reflect human disease
processes is debatable; they certainly cannot replicate the
phenotypic complexity of human disease. Identifying one or
two key abnormalities involved in a disease process and then
replicating them in an animal model under controlled condi-
tions appears to be the ideal approach, especially when it comes
to exploring biological mechanisms and testing new com-
pounds in a definitive manner [68]. In OSAHS, animal models
are difficult to develop. Various canine species are known to
develop SDB and the English bulldog has been used in a
number of studies on upper airway control. Inbred mice and
rats have been used to explore the pathways in ventilation and
upper airway control, and leptin resistance and the effects of
obesity have been explored in the obese Zucker rat [69].
However, there can be marked interspecies variability in
response to various chemokines and hormones. For example,
opposing effects are demonstrated in the case of serotonin
receptor antagonism using ritanserin (5HT2A, 2C and 7 receptor
antagonist) between dogs and rats. One study using the
normally respiring adult rat has shown that use of ritanserin
results in increased phrenic and hypoglossal activity [70], while
administration of the same drug in the English bulldog model of
OSAHS causes decreased activity of upper airway dilator
muscles with concurrent oxyhaemoglobin desaturation and
collapse of the upper airway [71]. There is a tendency to assume
that by discovering something in an animal model of OSAHS
that something of relevance has been discovered about human
OSAHS and this should be guarded against.

CURRENT GENETIC APPROACHES AND THEIR
LIMITATIONS
Two general approaches in study design have been used to
explore the genetic components of human disease: linkage
studies and association studies.

Linkage studies have been utilised mainly in the study of
single-gene disorders; they detect genetic markers throughout
the genome, which are not necessarily functionally significant

TABLE 1 Studies of ventilatory control in subjects with sleep-disordered breathing (SDB), families and controls

Reference Subjects n HVR HCVR HCVR and loading

SDB F Controls

[54] 10 12 9 SDB and family lower

than controls

No difference across groups Respiratory impedance greater in

family, c.f. controls

[55] 8 8 Decreased V9E in SDB

[56] 13# 32 No difference between relatives No difference between relatives

[56] 16 26 No difference between relatives No difference between relatives

[57] 35 17 No difference between groups Lower response in SDB

[58] 16 12 Greater increase V9E in SDB No difference between groups

[59] 20" 19 No difference between groups No difference between groups

[60] 37 14 No difference between groups No difference between groups

[61] 151 Total subjects 485: ventilatory variability index calculated. Multiple linear regression showed association with

AHI of increased ventilatory variability.

Patients with SDB are normocapnic unless otherwise indicated. F: family members; HVR: hypoxic ventilatory response; HCVR: hypercapnic ventilatory response; V9E:

minute ventilation; AHI: apnoea/hypopnoea index. #: hypercapnic patients; ": children with mean¡SD age 8¡3 yrs.
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in terms of phenotypic effect and they use extended families.
Genome-wide linkage studies utilise complex statistical tech-
niques with strength of association of a genetic locus with a
phenotypic marker reported as a logarithm of the odds (LOD)
score. In linkage analyses, a LOD score .3 is considered to
indicate significant linkage (the phenotypic locus and putative
genetic marker have a chance of ,1/1,000 of not being linked).
A score between 2 and 3 is considered to be ‘‘suggestive’’ of
linkage and a score ,2 is not suggestive of linkage [72].
Genetic linkage and positional cloning methods have not been
so successful in identifying genes implicated in polygenic
disorders. One strategic approach that may enhance the
success rate includes initial detection of linkage to a quanti-
tative trait locus, refining the chromosome localisation or fine
mapping and then positionally cloning the gene concerned,
and detecting the genetic polymorphisms contributing to the
trait phenotype [73].

Association studies are used to identify genes involved in
polygenic disorders; they determine genotype for polymorph-
ism in candidate genes of biological relevance to the disease
being investigated and use cases and appropriately matched
controls (usually unrelated). The association of a genotype or
phenotype with disease is a statistical finding not necessarily
reflecting genetic association [73]. Association studies may
currently be more useful in OSAHS, but only if they are
adequately designed and powered. Candidate gene studies
may be refined by using the common patterns of DNA
sequence variation available (HapMap Project) [74], making
the indirect association approach readily applicable and more
cost-effective. In this approach, ‘‘tag’’ single-nucleotide poly-
morphisms (SNPs) are used to identify unique haplotypes. The
Human Genome Project has made a SNP map possible, which
is a high-density map of 200,000–600,000 SNPs and a database
that contains 1.8 million SNPs [74]. Advances in SNP mapping
and high-throughput SNP genotyping platforms are making it
increasingly feasible to consider genome-wide association
studies. The case–control method of study design has the
advantage of both the increased statistical efficiency of
association analysis of a complex disease and the biological
understanding of the phenotype, tissues, genes, and proteins
that are likely to be involved [73]. However, numerous issues
relevant to the design of case–control studies must be
addressed, including: choice of candidate gene and SNP;
recruitment methods; control matching; and number of study
subjects (especially with respect to power) [73]. Gene expres-
sion studies can also be used to identify associations between
genes and OSAHS. Analysis of mRNA levels expressed by
probands’ genes in comparison to levels expressed by normal
controls can identify genetic factors underlying the disease and
the secondary molecular factors that are its consequence. Such
an approach may also lead to the recognition of previously
unknown pathophysiological pathways. Inherent difficulties
lie in deciding which tissue to sample for mRNA or protein
expression and the interpretation of findings. Replication and
careful follow-up in all studies is essential, especially in the
context of a disorder such as OSAHS, in which heterogeneity
of phenotypic expression (including epigenetic phenomena,
such as parental imprinting, disease fluctuation and sex effects,
complexity of mode of inheritance, and misclassification of
phenotype) can lead to dubious linkages [75]. Independent

replication in subsequent cohorts in the same population or in
independent populations is necessary for complete confidence
in a finding. Statistical considerations in this context are also
extremely important. Consistent replication in different popu-
lations is strong evidence of causality, but lack of replication
does not necessarily imply lack of causality. A large number of
SNPs studied may have real but modest effects on common
disease risk, but the studies are underpowered, leading to
false-negative reports [76]. A detailed discussion of the
genomic and proteomic aspects of sleep disordered breathing
has been provided by POLOTSKY and O’DONNELL [77].

GENETIC ASPECTS OF THE AETIOLOGY AND
SEQUELAE OF OSAHS
To date, two genome-wide scans have been performed in SDB.
PALMER et al. [78] performed a 9cM genome scan for OSAHS
and obesity in 66 European-American pedigrees comprising
349 subjects. OSAHS was phenotyped on the basis of AHI
alone using overnight, in-home measurement of breathing
using a portable monitor (Edentec Model 3711 Digital
Recorder; Nellcor, Eden Prairie, MN, USA). DNA was pooled
and multipoint variance component linkage analysis was
performed for the OSAHS-associated quantitative phenotypes
of AHI and BMI. The analysis identified candidate regions on
chromosomes 1p (LOD score 1.39), 2p (LOD 1.64), 12p (LOD
1.43) and 19p (LOD 1.40) for linkage with AHI. BMI was linked
to the following regions: chromosome 2p (LOD 3.08), 7p (LOD
2.53) and 12p (LOD 3.41). Further statistical modelling
indicated that evidence for linkage to AHI was removed after
adjustment for BMI, except for regions on chromosomes 2p
(adjusted LOD score 1.33) and 19p (adjusted LOD 1.45). When
BMI linkages were adjusted for AHI, the LOD scores were
roughly halved.

A further 9cM whole genome scan was conducted in 59
African-American pedigrees in identical fashion as above.
Analysis identified linkage on chromosome 8q (LOD 1.29) [79].
BMI was linked to chromosomes 4q (LOD 2.63) and 8q (LOD
2.56). Adjustment for AHI greatly reduced linkages to BMI,
and vice versa.

LOD scores ,2 are not suggestive of linkage under most
circumstances, especially in the context of modest power of the
sample size, lack of a reported significance threshold for the
sample and the use of quantitative traits. The results of these
studies must be interpreted with great caution.

In contrast, a large number of candidate gene studies have
been performed in OSAHS using various definitions of the
syndrome and with variable populations. To date, there has
been no consistent replication of the findings of any of the
studies and most are not immune to the criticism of being
underpowered, poorly controlled and very poorly pheno-
typed. They are summarised in table 2.

IS THERE A WAY FORWARD?
Despite sporadic reference to OSAHS in ancient times, OSAHS
was first fully described and recognised in the 20th century,
with effective treatment developed and refined in the last
30 yrs. However, the definitions of the disease remain rooted
in the 19th century, with failure to recognise both its
phenotypic complexity and the pathophysiological links
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between physiological and cellular abnormalities common to it
and other diseases. At present, OSAHS defies an unequivocal
phenotypical definition, imbuing any approaches to conduct-
ing and interpreting epidemiological and genetic studies with
nihilism. If there is to be any progress, however, it is essential
to fully address the complexity of the disease using a
standardised approach. This has major implications for
assessing prevalence, true effects on cardiovascular and
metabolic status and the long-term effectiveness of treatment
in the different populations who suffer from this condition.
One way of achieving this would be to correlate all variables
from all the different dimensions of the disease process, using
methods such as cluster analysis [101] and systems genetics
[102]. Based on increased understanding of the true nature of
OSAHS, a new model of the condition should be considered.
Various mathematical systems could be utilised to undertake
these analyses based on nonlinear modelling and chaos theory.
The paradigm that OSAHS and SDB lie inextricably linked on
the same disease spectrum has remained unchallenged for
.30 yrs: there is no evidence that snoring will develop into
SDB and then develop into OSAHS.

Further investigation should be undertaken into whether the
OSAHS phenotype remains static throughout life, or whether it
changes with time and under different environmental condi-
tions. At present, we are limited to studying the phenotype at a
single point in time, generally when it calls itself to clinical
attention. Longitudinal studies, first identifying those who
have OSAHS in childhood and following them through and,
secondly, continuing to follow those identified with SDB in
adult life, could be useful in clarifying this issue. There may be
large differences in underlying genotype, for instance, between
those progressing into old age with asymptomatic SDB, and
those who develop symptoms and require treatment. It may be
discovered that we are dealing with a range of diseases that
manifest as a single phenotype at a particular point in time in
the individual’s life rather than a single disorder (genotype).
Further study is needed in order to determine the best
variables to be used to define phenotype, including age- and
sex-related cut-offs for AHI.

Attention should be paid also to studying the intermediate
phenotypes that have been discussed in the present paper.
Already, innovative approaches have been undertaken to
better phenotype the craniofacial factors most pertinent to
the development of OSAHS (P.A. Cistulli, Royal North Shore
Hospital, University of Sydney, Sydney, Australia; personal
communication).

CONCLUSION
Obstructive sleep apnoea/hypopnoea syndrome appears to be
a complex polygenic disease. It is possible that a number of
intermediate phenotypes interact in different dimensions to
produce a single phenotype at a given point in time. The
degree of environmental influence is difficult to gauge but is
likely to be considerable. Progress in determining the genotype
of obstructive sleep apnoea/hypopnoea syndrome is affected
by the lack of a consistent definition of phenotype. At the
present time we appear to be limited in studying the
phenotype at a single point in time and the tools that we have
for this are at present very blunt.
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evolution of moderate sleep apnoea syndrome: signifi-
cant progression over a mean of 17 months. Thorax 1997;
52: 872–878.

28 Sforza E, Addati G, Cirignotta F, Lugaresi E. Natural
evolution of sleep apnoea syndrome: a five year longi-
tudinal study. Eur Respir J 1994; 7: 1765–1770.

29 Arens R, Marcus CL. Pathophysiology of upper airway
obstruction: a developmental perspective. Sleep 2004;
1;27: 997–1019.

30 Malhotra A, Huang Y, Fogel R, et al. Aging influences on
pharyngeal anatomy and physiology: the predisposition
to pharyngeal collapse. Am J Med 2006; 119: 72.

31 Behan M, Brownfield MS. Age-related changes in
serotonin in the hypoglossal nucleus of rat: implications
for sleep-disordered breathing. Neurosci Lett 1999; 28;267:
133–136.

32 Riha RL, Brander P, Vennelle M, Douglas NJ. A
cephalometric comparison of patients with the sleep
apnea/hypopnea syndrome and their siblings. Sleep 2005;
1; 28: 315–320.

33 Pack AI, Silage DA, Millman RP, Knight H, Shore ET,
Chung DC. Spectral analysis of ventilation in elderly
subjects awake and asleep. J Appl Physiol 1988; 64:
1257–1267.

34 Weaver TE, Chasens ER. Continuous positive airway
pressure treatment for sleep apnea in older adults. Sleep
Med Rev 2007; 11: 99–111.

R.L. RIHA ET AL. PHENOTYPE AND GENOTYPE OF SLEEP APNOEA

c
EUROPEAN RESPIRATORY JOURNAL VOLUME 33 NUMBER 3 653



35 Lavie L, Lavie P. Ischemic preconditioning as a possible
explanation for the age decline relative mortality in sleep
apnea. Med Hypotheses 2006; 66: 1069–1073.

36 Morris AH. Rigorous genotype-phenotype association
research depends on scientific rigor at multiple scales of
investigation. Crit Care Med 2008; 36: 2956–2958.

37 Ernande B, Dieckmann U. The evolution of phenotypic
plasticity in spatially structured environments: implica-
tions of intraspecific competition, plasticity costs and
environmental characteristics. J Evol Biol 2004; 17: 613–628.

38 American Academy of Sleep Medicine Task Force. Sleep
related breathing disorders in adults: recommendations
for syndrome definition and measurement techniques in
clinical research. Sleep 1999; 22: 667–689.

39 Behrents RG. The biological basis for understanding
craniofacial growth during adulthood. Prog Clin Biol Res
1985; 187: 307–319.

40 Lavie P, Rubin AE. Effects of nasal occlusion on
respiration in sleep. Evidence of inheritability of sleep
apnea proneness. Acta Otolaryngol 1984; 97: 127–130.

41 Thesleff I. The genetic basis of normal and abnormal
craniofacial development. Acta Odontol Scand 1998; 56:
321–325.

42 Mina M. Regulation of mandibular growth and morpho-
genesis. Crit Rev Oral Biol Med 2001; 12: 276–300.

43 Francis-West P, Ladher R, Barlow A, Graveson A.
Signalling interactions during facial development. Mech
Dev 1998; 75: 3–28.

44 Crummy F, Piper AJ, Naughton MT. Obesity and the
lung: 2. Obesity and sleep-disordered breathing. Thorax
2008; 63: 738–746.

45 Kapsimalis F, Varouchakis G, Manousaki A, et al. Associ-
ation of sleep apnea severity and obesity with insulin resis-
tance, C-reactive protein, and leptin levels in male patients
with obstructive sleep apnea. Lung 2008; 186: 209–217.

46 Bouchard C. Genetics of human obesity: recent results
from linkage studies. J Nutr 1997; 127: 1887S–1890S.

47 Rankinen T, Zuberi A, Chagnon YC, et al. The human
obesity gene map: the 2005 update. Obesity 2006; 14: 529–
644.

48 Krueger JM, Obal F Jr, Fang J. Humoral regulation of
physiological sleep: cytokines and GHRH. J Sleep Res
1999; 8: Suppl. 1, 53–59.

49 Krueger JM, Majde JA. Humoral links between sleep and
the immune system: research issues. Ann N Y Acad Sci
2003; 992: 9–20.

50 Williams A, Scharf SM. Obstructive sleep apnea, cardio-
vascular disease, and inflammation – is NF-kB the key?
Sleep Breath 2007; 11: 69–76.

51 Fenik P, Veasey SC. Pharmacological characterization of
serotonergic receptor activity in the hypoglossal nucleus.
Am J Respir Crit Care Med 2003; 167: 563–569.
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