Massive haemoptysis: the definition should be revised

To the Editors:

Massive haemoptysis represents one of the most challenging conditions in clinical practice. The condition is potentially lethal and, therefore, warrants clear understanding and precise definition. The definition of massive haemoptysis has not been completely agreed upon and varies widely in the literature. It is unfortunate that almost all previous definitions of massive haemoptysis relied only on the volume of expectorated blood. The use of expectorated blood volume alone to define massive haemoptysis is often misleading and confusing for three main reasons. First, no cut-off volume has been agreed upon in the literature. While Amirana et al. [1] proposed an amount of 100 mL of expectorated blood in 24 h to define massive haemoptysis, Corey and Hla [2] defined massive haemoptysis as expectoration of \(\geq 1,000 \) mL of blood over 24 h. In the middle of the spectrum we find other studies that use 200 mL [3], 240 mL [4], 500 mL [5] or 600 mL [6] as a cut-off volume for the definition of massive haemoptysis. Secondly, in real practice, the quantification of haemoptysis is often difficult and, from a clinical point of view, such criteria are not useful [7]. In many instances the amount of expectorated blood may be exaggerated by patients. Furthermore, in a majority of patients, quantification of expectorated blood volume may underestimate the overall amount of blood loss because the volume of blood engulfing the involved lobes or lungs is not quantified and may be significant [8]. Thirdly, morbidity and mortality in patients with haemoptysis depend on not only the volume of expectorated blood but also the rate of bleeding, the ability of the patient to clear blood from the airways and the extent and severity of any underlying lung disease [9]. The confusion created by the arbitrary use of the volume of expectorated blood to define massive haemoptysis has led other authors to consider the magnitude of effects (namely airway obstruction and hypotension) as the defining factors [10, 11].

I feel that the confusion will persist if we continue to use the word “massive”. The term “massive haemoptysis” is a general term that was originally selected to describe the magnitude of life-threatening bleeding. Over time, this term became a loosely applied descriptor for the condition as the word “massive” necessitates the identification of a specific volume of blood. Therefore, in order to precisely define this serious condition, we should move away from using the word massive. The term “life-threatening haemoptysis” may provide a fascinating and rich understanding of the condition. Thus, life-threatening haemoptysis may be defined as any haemoptysis that: 1) is \(>100 \) mL in 24 h; 2) causes abnormal gas exchange/airway obstruction; or 3) causes haemodynamic instability. The cut-off volume of 100 mL per 24 h has been selected because it is the smallest amount of haemoptysis that is reported in literature to threaten the life of the patient.

W.H. Ibrahim
Dept of Medicine, Hamad General Hospital, Doha, Qatar.

STATEMENT OF INTEREST
None declared.

REFERENCES

P.M.A. Calverley and P. Albert
Division of Infection and Immunity, Clinical Sciences Centre, University Hospital Aintree, Liverpool, UK.

STATEMENT OF INTEREST
None declared.

REFERENCES
1 Albert P, Calverley PMA. Drugs (including oxygen) in severe COPD. Eur Respir J 2008; 31: 1114–1124.
Mortality predictive capacity of the 6-min walk distance

To the Editors:

In a recent issue of the European Respiratory Journal we read with interest the article by Cote et al. [1] on the capacity of the 6-min walk distance to predict mortality in chronic obstructive pulmonary disease patients. We noted a striking difference between the cut-off value reported by Cote et al. [1], corresponding to 350 m, and a cut-off value previously reported as the mortality predictor in patients with idiopathic pulmonary fibrosis, which was 207 m [2].

Even considering the obvious diversities between the two diseases, such a difference is quite surprising. The two populations cannot be compared by forced expiratory volume in one second values because such data are lacking in the article by Lederer et al. [2], but in both studies there are the data concerning forced vital capacity (FVC). Thus, we are permitted to compare the lung function by this parameter, where a remarkable difference can also be found: Cote et al. [1] reported a mean FVC value of 72.7 ± 21% predicted, whereas Lederer et al. [2] reported a mean value of 51 ± 17% pred. The mortality rates were approximately two-fold in the study by Cote et al. [1] and four-fold in the study by Lederer et al. [2]. In particular, the mortality rates recorded by Lederer et al. [2] were significantly lower in the fourth quintile, patients walking 314–395 m, which included the allocated 350 m cut-off reported by Cote et al. [1].

As physicians currently working in a pulmonary rehabilitation setting we would like to learn more about the prognostic significance of the distance walked during the 6-min walk distance test in different respiratory diseases, which was not discussed in the study by Cote et al. [1].

G.G. Riario Sforza and C. Incorvaia
Pulmonary rehabilitation, Istituti Clinici di Perfezionamento, Milan, Italy.

STATEMENT OF INTEREST
None declared.

REFERENCES

From the authors:
We have read with interest the observations by G.G. Riario Sforza and C. Incorvaia regarding the differences in the threshold values used to predict mortality that were provided by Lederer et al. [1] for patients with idiopathic pulmonary fibrosis (IPF) and those that were reported for patients with chronic obstructive pulmonary disease (COPD) [2].

First, G.G. Riario Sforza and C. Incorvaia correctly point out that Lederer et al. [1] quote a threshold of 207 m as being more specific for waiting-list mortality at 6 months but, in the discussion, Lederer et al. [1] also state that the 350-m cut-off remained more sensitive for waiting-list mortality, a value that is very close to the one we reported [2].

Secondly, G.G. Riario Sforza and C. Incorvaia show surprise about the difference in mortality between the patients with IPF and those with COPD in our study. This has several likely explanations. To begin with, the patients reported by Lederer et al. [1] were all on the waiting list for transplantation due to IPF, whereas ours were patients with different severity of COPD attending regular clinics, that is to say, healthier [2]. Furthermore, Lederer et al. [1] do not mention the use of corticosteroids or immunosuppressants in their patients but it is very likely that patients with such severity of IPF may have been on agents capable of inducing muscle dysfunction. Finally, patients with COPD, even on transplant lists, have a better prognosis than patients with IPF or other underlying disease, thereby making direct comparisons difficult.

DOI: 10.1183/09031936.00074408