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The effects of hypoxia on the cells of the

pulmonary vasculature
O. Pak, A. Aldashev, D. Welsh and A. Peacock

ABSTRACT: Pulmonary hypertension is associated with remodelling of pulmonary vessels.

Chronic hypoxia is a common cause of pulmonary hypertension and pulmonary vascular

remodelling. Vascular remodelling is characterised largely by fibroblast, smooth muscle and

endothelial cell proliferation, which results in lumen obliteration. Chronic hypoxia elicits

expression of mitogens, growth factors and cytokines by fibroblasts and endothelial cells, and

also the suppression of endothelial nitric oxide synthase. Although hypoxic pulmonary vascular

remodelling is associated with medial hypertrophy, many in vitro studies have found that hypoxia

does not lead to a direct increase in smooth muscle cell proliferation. This paradox is not well

understood and this review aims to examine the various reasons why this might be so. The

present authors reviewed data from in vitro studies and also considered whether hypoxia could

act on adjacent cells such as fibroblasts and endothelial cells to trigger smooth muscle cell

proliferation. It is possible that hypoxia is sensed by fibroblasts, endothelial cells, or both, and

relayed to adjacent pulmonary artery smooth muscle cells by intercellular signalling, causing

proliferation.

The present article reviews the data from in vitro studies of hypoxia on the three cellular

components of the pulmonary vascular wall, namely endothelial cells, smooth muscle cells and

fibroblasts.
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P
ulmonary hypertension (PH) is a compli-
cation for those subjected to environmen-
tal hypoxia as a result of living at high

altitude and for those suffering from chronic
hypoxic lung diseases, such as chronic obstruc-
tive pulmonary disease (COPD), cystic fibrosis,
bronchiectasis and asthma. PH is independently
associated with increased morbidity and reduced
survival in patients suffering from hypoxic lung
disease [1], and is both accompanied and caused
by pulmonary vascular remodelling [2]. The
pulmonary vascular wall consists of three layers:
adventitia, media and intima, whose cellular
components are fibroblasts, smooth muscle
cells (SMC) and endothelial cells (EC), respec-
tively. The remodelling of pulmonary arteries
is a complicated pathological process in which
all three layers of the vascular wall are involved
[3].

In the present article, the authors have reviewed
the evidence from the many in vitro studies of
hypoxia on pulmonary vascular cell proliferation
and function but have concentrated on the

controversy surrounding the reported effects of
hypoxia on SMC proliferation.

VASCULAR REMODELLING AND PH IN
RESPONSE TO HYPOXIA
Under normal conditions, the thickness of the
vascular wall is maintained at an optimal level by
a fine balance between proliferation and apopto-
sis of the resident cell types. If this balance is
disturbed in favour of proliferation, the vascular
wall thickens and eventually obliterates the
vessel lumen, leading to increased resistance.
This structural change of the vascular bed is
termed vascular remodelling [3]. Pulmonary
artery (PA) remodelling leads to an increase in
pulmonary pressure resulting in further remodel-
ling. Proliferation of adventitial fibroblasts
increases within hours of hypoxic exposure [4],
but, a few days after exposure (to hypoxia),
thickening of the medial layer (hypertrophy and
hyperplasia) begins to develop [5]. It is known
that hypertrophy of SMC makes a greater
contribution than hyperplasia in the larger, more
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proximal arteries, whereas hyperplasia is more prevalent in the
smaller resistance arteries [6, 7]. Furthermore, fibroblasts
migrate into the medial layer and can transform into SMC
[8]. EC also participate in hypoxic pulmonary remodelling by
producing vasoconstrictive pro-proliferative factors (endothe-
lin (ET)-1, angiotensin II, thromboxane A2), and reducing the
production of vasodilatory, anti-proliferative mediators (nitric
oxide (NO) and prostaglandin-I2). HOWELL et al. [9] showed
that the volumes of intima and adventitia from lungs of
hypoxic rats were increased 1.5-fold, and the volume of media
was increased six-fold, compared with normoxic controls.

It is accepted that hypoxia is a cause of pulmonary vascular
cell proliferation and vascular remodelling, but the mechan-
isms remain unclear. In vitro studies have demonstrated that
hypoxia has direct effects on cell proliferation in some, but not
all, cell preparations [10–12]. Hypoxia is able to increase cell
proliferation by inhibition (production and/or release) of
antimitogenic factors (e.g. NO and prostacyclin) and by
increasing the production and/or release of different mito-
genic stimuli (e.g. 5-hydroxytryptamine, ET-1, platelet-derived
growth factor (PDGF) and vascular endothelial-derived growth
factor (VEGF)) and inflammatory mediators (e.g. interleukin
(IL)-6, IL-8 and monocyte chemoattractant factor-1) from SMC,
fibroblasts, EC and platelets [13–18]. Furthermore, hypoxic
exposure leads to increased production of extracellular
matrix components [19].

Several possible pathways have been implicated in the cellular
response to hypoxia. For example, in SMC, hypoxia dramati-
cally increases the level of Ca2+ in the cytoplasm [20]. Increased
Ca2+ levels lead to activation of Ca2+/calmodulin and mitogen-
activated proein kinases (MAPKs) and expression of the early
response gene c-fos [21, 22]. An elevated Ca2+ level in SMC has
been shown to modulate proliferation and growth [22]. Another
example is the Rho kinase pathway, which phosphory-
lates the myosin phosphatase target subunit-1 of smooth
muscle myosin phosphatase leading to the inhibition of its
activity [23]. This inhibition of smooth muscle myosin
phosphatase activity leads to Ca2+ sensitisation of smooth
muscle causing contraction, gene expression and increased
proliferation [23].

These signalling processes may be different for different cell
types. It is known that acute hypoxic exposure leads to early
proliferation of pulmonary artery fibroblasts (PAF) and this
proliferation appears to be dependent on the tumour suppres-
sor protein (p38) MAPK [10–12] (fig. 1). p38 MAPK is among
the key mechanisms that transmit signals from the cell surface
to the nucleus, and belongs to the Ras/extracellular-signal-
regulated kinase signalling pathway [24, 25]. p38 MAPK can
directly influence gene transcription with a growing number of
transcription factors known to be direct targets of p38
(activating transcription factor (ATF)-1, ATF-2, ATF-6, myo-
cyte factor (MEF)2C, MEF-A, signalling lymphocytic activation
molecule associated protein-1A and others) [26]. Another
important target of p38 MAPK is the tumour suppressor
protein itself, p53 [27]. A link has also been established
between p38 MAPK and hypoxia inducible factor (HIF)-1a, the
key transcription factor in the biochemical response to
hypoxia. There was a reduction in HIF-1a expression in
human PAF (HPAF) cells grown in conditions of acute hypoxia

if the cells were pre-incubated with SB203580, a specific p38
MAPK inhibitor [28]. The relationship between p38 MAPK and
HIF-1a is an attractive explanation for the role of p38 MAPK in
hypoxia-mediated HPAF proliferation as HIF-1a is known to
be responsible for the upregulation of hypoxia-sensitive gene
products [26]. The mechanism of this relationship is unclear at
present; HIF-1a may be a downstream effector of p38 MAPK or
p38 MAPK may contribute towards HIF-1a stability.

Reduction of apoptosis also plays an important role in the
remodelling of the pulmonary vasculature [29, 30]. A char-
acteristic of human pulmonary arterial hypertension (PAH)
and experimental PAH in rodents is loss of voltage-gated K+

channel (Kv) current [31] due to a decreased expression of
certain Kv channels [32–34]. Chronic Kv downregulation
precipitates hypertrophy and hyperplasia of SMC and pre-
vents removal of cells, by reducing apoptosis rates [30].

It is important to note that there are instances where
remodelling of pulmonary resistance vessels occurs in the
absence of significant PH. For example, in humans with COPD,
marked thickening of the walls of the pulmonary arteries has
been observed in the absence of PH [35]. In chronically infected
rat lungs where neither PH nor right ventricular hypertrophy
was observed, pulmonary vessel walls were thickened [36, 37].
One possible explanation for these findings is that this
thickening occurred in an outward direction such that it did
not lead to reduction of the vessel lumen. This type of outward
remodelling, called compensatory enlargement, has been well
described in the systemic circulation [38, 39].

MODELS UTILISED TO STUDY PULMONARY VASCULAR
REMODELLING
A number of models have been used to investigate the
mechanisms underlying pulmonary vascular remodelling, of
which hypoxia and monocrotaline are the most widely used.
Hypoxia is a more physiological model than monocrotaline-
induced PH for the study of pulmonary vascular remodelling.
Monocrotaline-induced PH does not occur in nature whereas
hypoxia is a pathological stimulus leading to the development
of PH at high altitude or as a consequence of hypoxic lung
disease at sea level.

Other, less commonly used, models of PH include systemic-to-
pulmonary artery shunts and VEGF receptor-2 blockade by
SU5416, which is a cause of pulmonary arterial endothelial cell
death [2, 40, 41].

Monocrotaline
Monocrotaline (pyrrolizidine alkaloid) is a plant-derived
toxin (from plants of the Crotalaria species). When injected
into rats as a single i.p. dose it causes endothelial cell injury
and subsequently a massive mononuclear infiltration into
the perivascular regions of arterioles and muscular arteries.
These animals develop severe PH in the 2–3 weeks following
monocrotaline exposure [42], leading to the development
of right ventricular hypertrophy progressing to right ventri-
cular failure [43]. Although typical plexiform lesions are
not normally found in monocrotaline-induced PH, it is
used as a standard model for both secondary and primary
PH [44].
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Hypoxia
Hypoxia is the most commonly used model in the study of
pulmonary vascular remodelling. The effect of acute hypoxia
on vascular remodelling is generally studied by the culture of
vascular cells. Cells are usually exposed to normobaric hypoxia
(0–10% oxygen), for 4–24 h, with measurement of cell
proliferation or the release of mitogenic factors [11].

Chronic hypoxia is usually studied in vivo in animals exposed
to hypoxic conditions for days to weeks. In the most commonly
used model, rats are exposed to normobaric (10% oxygen) or
hypobaric (320 mmHg or 42.6 kPa) hypoxia for 2–3 weeks,
typically leading to a 50% increase in mean PA pressure (PAP),
and a doubling in weight of the right ventricle [45].

Acute hypoxia is a stimulus for pulmonary vasoconstriction [3,
46], a physiological process where regional hypoxia serves as
an important regulatory mechanism in redirecting blood flow
to better-oxygenated lung regions. Chronic global hypoxia,
however, is a cause of PH. Pulmonary haemodynamic
measurements performed in children and young adults
resident at high altitude (partial pressure of oxygen in inspired
air falls with increasing terrestrial elevation above sea level),
show persistence of elevated PAP [47, 48]. Histological
examination of pulmonary vessels in high-altitude residents

who died from causes other than chronic pulmonary sickness
shows typical patterns of pulmonary hypertension [49, 50].
Other causes of chronic hypoxia are the pathological condi-
tions and diseases leading to alveolar hypoxia, including
COPD, cystic fibrosis, bronchiectasis and asthma. Early studies
demonstrate that 6% of patients with COPD develop cor
pulmonale each year [51]. Mean PAP in patients with COPD
increases slowly (0.28 mmHg?yr-1) with 25% of all patients
having a resting PAP of .20 mmHg [52]. Although these
pressures are not high by the standards of idiopathic PH, these
pressures are much higher during sleep, exacerbations of the
lung disease or on exercise. Extrapolation of these data
suggests that a significant number of patients with COPD will
develop PH over the course of their disease and will have
increased morbidity and mortality as a result.

Hypoxia-induced PH is characterised by a marked increase in
pulmonary vascular resistance due to both vasoconstriction
and remodelling. Muscular arteries in rats exposed to chronic
hypoxia double their thickness, and distal extension of
pulmonary artery smooth muscle cells (PASMC) into normally
nonmuscular arteries can be observed [6]. Numerous investi-
gations of human and animal models have shown that chronic
hypoxia is a trigger of PA remodelling [3, 53]. It is generally

FIGURE 1. A schematic diagram illustrating the hypoxic signalling pathways that lead to vascular remodelling of the pulmonary artery. 5-HT: 5-hydroxytryptamine;

BMPR-II: bone morphogenetic protein type II receptor; RTK; receptor tyrosine kinase; P: phosphate; R: receptor; G: g-protein; PLC: phospholipase C; SH: Src homolgy;

Grb: growth factor receptor-bound protein; GRF: guanine nucleotide releasing factor; PKC: protein kinase C; IP3: inositol 1, 4, 5 trisphosphate; DAG: diacylglycerol; MLK:

mixed lineage kinase; HIF: hypoxia-inducible factor.
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believed that the contribution of vasoconstriction is greatest
early in the disease process and that structural remodelling of
the pulmonary vascular bed becomes progressively more
important with time. The concept that structural change is an
important determinant of increased resistance and pressure in
chronic PH is supported by observations that, after prolonged
exposure to hypoxia, acute re-exposure to normal or even high
levels of inspired oxygen are ineffective in reducing PAP.

EFFECTS OF HYPOXIA ON VASCULAR CELLS AND
PULMONARY VASCULAR REMODELLING

Effects of hypoxia on EC and PA remodelling
The EC layer forms a permeable barrier between circulating
blood cells and the underlying vascular tissue, which is
composed of fibroblasts and SMC. As such, it is in a unique
position to respond to circulating factors, and serves as a signal
integrator and transducer to modulate events in the vascu-
lature via paracrine effects. EC and SMC appear to cooperate
intricately in various physiological events, including the
control of vascular tone and cellular growth [54].

Effect of acute hypoxia on EC

There is little information in the literature about the influence of
acute hypoxia on pulmonary EC proliferation. During acute
hypoxic exposure, EC division slows but does not arrest;
progression through the G-to-S transition point and/or pro-
gression from the S-to-G2/Mitosis phase of the cell cycle is
altered with an increased proportion of EC in the S phase [55].

Effect of chronic hypoxia on EC

EC proliferation is increased by chronic hypoxia. In the
chronically hypoxic rat model of PH, there is an increase in
the number of EC in both the main PA and in the small muscular
arteries [9, 53]. In hypoxic neonatal calves, the endothelial
proliferative index is enhanced after 14 days’ exposure to 8%
oxygen [56]. In primary PH (idiopathic PAH), this EC
proliferation leads to the formation of plexiform lesions [57,
58]. It is not known whether hypoxia-induced EC proliferation
may lead to similar lesions, but other stimuli such as mechanical
stretch or shear stress are also likely to be important.

Effects of hypoxia on SMC and PA remodelling
Medial thickening is the main determinant of pulmonary
vascular resistance. Pre-capillary segments of the pulmonary
vascular bed contribute the majority of pulmonary vascular
resistance. It therefore follows that small changes in tone and/
or structure in this area can lead to a large elevation of PAP.
These vessels are normally only partially muscularised,
although hypoxic pulmonary vascular remodelling leads to
enhanced muscularisation [53], hence these vessels are a key
feature of hypoxic pulmonary vascular remodelling.

Effect of acute hypoxia on SMC

There is much contradiction within the scientific literature
about the influence of acute hypoxia on cultures of PASMC in
vitro. It is unclear whether hypoxia has direct mitogenic or
comitogenic effects on PASMC, whether hypoxia induces

TABLE 1 Influence of acute hypoxia on pulmonary artery smooth muscle cell (PASMC) proliferation

First author [Ref.] Acute hypoxia stimulates PASMC proliferation Acute hypoxia decreases or does not influence PASMC proliferation

O2 % FCS % Cell density on

plates cells?cm-2

Proliferation O2 % FCS % Cell density on plates

cells?cm-2

Proliferation

FRID [64] 3 10 ,10000 q L1, L3R* 3 0.1 ,10000 «#

3 10 ,10000 QL2, L3S*

COOPER [65] 5 1, 2 and 5 5000 q* 0 2 5000 Q

YANG [71] 0 10 3.4 q*" 0 10 6800 Q*

LANNER [60] 3 5 ,5000 q 3 0.1 ,5000 «
BENITZ [62] 5–10 20 2500 q

TAMM [63] 3 5 q*

AMBALAVANAN [66] 1, 2, 3, 5,

7 and 10

10 10000 q1, 5, 7, 10*

STOTZ [67] 5 1 4000 q

LU [68] 2 5 2500 q*

FRANK [69] 1 q*

PRESTON [70] 3 10, 0.1 2000–4000 q*

HASSOUN [72] 0 10 ,5000 Q

3 and 10 10 ,5000 «
DEMPSEY [59] 3 0.1 ,25000–50000 «
EDDAHIBI [17] 0 0.2 ,25000 Q*

STIEBELLEHNER [61] 3 10 ,25000 Q

3 0.1 ,25000 «
ROSE [73] 1 ? (serum-free) Q

FCS: foetal calf serum; L1: inner media, subendothelial layer; L3: outer media; R: rounded epithelioid cells; L2: middle media; S: spindle-shaped cells; q: increase of

smooth muscle cells proliferation; Q: decrease of proliferation; «: no difference. *: p,0.05, significant change; #: all cells; ": hypoxia-selected cells.
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PASMC to produce an autocrine growth factor or whether
hypoxia induces adjacent cells (EC or fibroblasts) to produce
factor(s) that stimulate SMC proliferation. Many investigators
have shown that, either acute hypoxia is not a direct stimulus
for PASMC proliferation [59, 60], or it actually decreases
PASMC proliferation [17, 61]. However, others have shown
that acute hypoxia alone is an effective mitogenic stimulus for
PASMC [62–70]. The present authors reviewed the current
literature where investigators had studied the effect of acute
hypoxia on PASMC proliferation (table 1).

There are several possible reasons for these contradictory
findings.

Variation in the source of the PA cells chosen for study

It is known that hypertrophy of PASMC makes a greater
contribution than hyperplasia in the larger, more proximal
arteries, whereas hyperplasia is more important in the smaller
resistance arteries [6, 7]. However, even experiments using
explants from the same part of the pulmonary arterial tree
have given conflicting results. For example, DEMPSEY et al. [59]
found that hypoxia did not stimulate proximal PASMC
proliferation, whereas AMBALAVAN et al. [66] showed that
proximal PASMC proliferated at oxygen concentrations of 5–
10%. STIEBELLEHNER et al. [61] found that hypoxia did not
stimulate distal PASMC proliferation, whereas STOTZ et al. [67]
showed a 5–10% increase in proliferation rates of pulmonary
microvascular SMC in the face of acute hypoxia.

Phenotypic variations of SMC within the arterial media

Recent studies of the pulmonary circulation have demon-
strated that morphologically, physiologically and immunohis-
tochemically distinct SMC phenotypes exist within the arterial
media of the PA [64]. FRID et al. [64] isolated four phenotypi-
cally unique subpopulations from the inner, middle, and outer
compartments of the arterial media of the PA and showed that
that cells from the inner medial subendothelial layer (L1) and
those from the outer medial layer (L3R) exhibited a highly
proliferative phenotype and, unlike traditional SMC, prolifer-
ated under hypoxic conditions. Conversely, cells from the
middle medial (L2) and outer medial (L3S) layers had a
decreased proliferative response under hypoxic conditions
when compared with normoxia.

Severity of hypoxia

Investigators who found a positive correlation between acute
hypoxia and PASMC proliferation tended to use moderate
levels of hypoxia (1–5% oxygen) [62, 63, 65–69], whereas those
who found that hypoxia caused a decrease in PASMC
proliferation used severe hypoxia or even anoxia [17, 65, 71, 72].

Seeding density of SMC in cell culture plates

The current authors found that in all studies of acute hypoxia
where increased proliferation was observed, PASMC were
seeded at a density f5,000 cells?cm-2 [62, 65, 67, 68, 70] whereas
in all studies where hypoxia caused a decrease in proliferation,
cells were seeded at a density of .10,000 cells?cm-2 [17, 59, 61,
64]. It is likely that contact inhibition would appear earlier in
experiments where cells were seeded at higher densities, and
KUEHL et al. [74] showed a correlation between cell proliferation
in response to hypoxia and seeding density.

Concentration of serum in the cell culture plates
In studies showing that acute hypoxia increased PASMC
proliferation in vitro, the serum concentration used for
stimulation of proliferation was usually .2% (nine out of 11
studies), whereas in those showing no change, or even a
decrease in proliferation with hypoxia, the serum concentra-
tion used was often ,2% (six out of nine studies) [62, 63,
65–69].

Effect of chronic hypoxia on SMC
Chronic hypoxia leads to proliferation of PASMC in vivo.
Histological and morphological analysis of PAs of animals
exposed to chronic hypoxia, and humans who died from high
altitude PH, showed a significant thickening of the muscular
layers [42, 75]. Chronic hypoxia also causes extension of SMC
into normally nonmuscular arteries.

Effects of hypoxia on fibroblasts and PA remodelling
An increasing volume of experimental data supports the view
that adventitial fibroblasts play an important role in pulmon-
ary vascular remodelling. The vascular adventitia can act as a
biological processing centre for the production, storage and
release of key regulators of vessel wall function. In response to
stress or injury (e.g. hypoxia), resident adventitial cells can be
activated and reprogrammed to exhibit different functional
and structural behaviours, which include proliferation, differ-
entiation, upregulation of contractile and extracellular matrix
proteins and release of factors that directly affect medial SMC
tone and growth.

Effect of acute hypoxia on fibroblasts
Investigators have shown that acute hypoxia is a direct trigger
for fibroblast proliferation in vitro in rat, bovine and human
models in the presence or absence of exogenous mitogens [8].
Exposure to acute hypoxia leads to fibroblast proliferation and
hypertrophy [10–12]. In these models, hypoxic proliferation of
fibroblasts has been shown to last longer and exceed that of
PAEC or SMC [76].

Effect of chronic hypoxia on fibroblasts
Proliferation of adventitial fibroblasts occurs before that of
other cell types in animal models of chronic hypoxia [4]. In
small pulmonary arteries, fibroblasts increase production of
extracellular matrix proteins (type I collagen and elastin),
which contributes to the narrowing of the vascular lumen [77].
In addition, there is an early and dramatic upregulation of
collagen, fibronectin and tropoelastin mRNA followed by the
subsequent deposition of these proteins [78].

Repair of injured tissue is an essential requirement for any
living organism. PH is a haemodynamic stress, leading to
injury of the arterial wall. SMC, EC and fibroblasts in the
pulmonary vascular wall play specific roles in this response to
this injury. Fibroblasts are in a unique position for this role,
since they are less differentiated and have remarkable
plasticity, allowing for rapid migration, proliferation, synthesis
of connective tissue, contraction, cytokine production and,
most importantly, transdifferentiation into other types of cells
[8]. Hypoxia-induced changes in fibroblast proliferative and
matrix-producing phenotypes are accompanied by the appear-
ance of smooth muscle a-actin in tissues from pulmonary
hypertensive subjects, suggesting that fibroblasts can be
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transdifferentiated into myofibroblasts [8]. This transdifferen-
tiation involves a complex network of microenvironmental
factors and pathways in which extracellular matrix compo-
nents along with growth factors, cytokines and adhesion
molecules play a role. In rats exposed to hypoxia, pre-capillary
vessels of a diameter of ,25 mm, which are normally devoid of
SMC, begin to generate this cell type from adventitial
fibroblasts within 24 h [79]. Light microscopy of nonmuscular
arterioles after exposure to hypoxia shows that smooth muscle
begins to form by day 2 at simulated altitude, the proportion of
muscularised arterioles increasing along with increasing PAP
[80]. Interestingly, these studies show that after return to
normoxia, SMC persist in normally nonmuscularised arter-
ioles, suggesting that smooth muscle cells may remain for long
periods after exposure to hypoxia.

The pulmonary vascular adventitia of neonatal calves has been
found to contain multiple, and functionally distinct, subpopu-
lations of fibroblasts [78]. Proliferation under hypoxic condi-
tions is highly variable among these subpopulations, with
some exhibiting more than a two-fold increase in DNA
synthesis, while others show a decrease in DNA synthesis.
These observations suggest that hypoxia specifically selects
certain phenotypically and functionally distinct subpopula-
tions of fibroblasts to act as stem cells for the vascular wall.
Since each subpopulation of fibroblasts responds uniquely to
hypoxia, they may serve special functions in response to
injury. Thus, the adventitial fibroblasts residing in the vessel
wall may be a critical regulator of vascular remodelling under
hypoxic conditions.

INTERACTIONS BETWEEN FIBROBLASTS, SMC AND EC
Studies have shown that EC secrete mitogenic factors under
hypoxic conditions that induce SMC proliferation. Bovine
aortic EC have been shown to secrete several SMC growth
factors, including PDGF, endothelial-derived growth factor,
insulin like growth factor 1, fibroblast growth factor and IL-1
[13, 14, 81, 82]. It is known that EC produce PDGF-B in
response to hypoxia [12], but SMC do not [66]. It has also been
shown that increased ET-1 expression in pulmonary vascular
EC appears to be transcriptionally mediated by hypoxia [13,
14]. The expression of such vasoactive agents as ET-1 and
PDGF-B is dramatically increased in EC exposed to low oxygen
tension [14] and, similarly, VEGF is induced in SMC. In
addition to increasing the release of growth factors, hypoxia
stimulates the production of some extracellular matrix pro-
teins, such as thrombospondin-1 in human EC [83].
Thrombospondin-1 modulates SMC proliferation and migra-
tion and may be a negative regulator of angiogenesis [84].
Because of their localisation at the interface between blood and
tissue, EC are responsible for the maintenance of vascular
homeostasis. They fulfil a series of functions and constantly
interact with circulating leukocytes and SMC present in the
media. Any disturbance of their metabolism can thus lead to
alterations of blood vessel function [85].

The addition of conditioned medium, obtained from pulmon-
ary EC exposed to hypoxia, to cultures of quiescent PASMC
has been shown to result in a significant increase in total cell
number [86, 87]. Conversely, others have shown that hypoxic
bovine PAEC release an inhibitor of PASMC growth isolated
from the main PA of calves [72].

A strong proliferative response of PASMC was noted when
SMC were co-incubated with adventitial fibroblasts from
human and rat PA [73]. There is increasing experimental
evidence demonstrating that fibroblasts exert significant
paracrine effects on other cells. Fibroblasts are known to
produce a wide array of cytokines, growth factors (transform-
ing growth factor-b, epithelial growth factor, insulin-like
growth factor, PDGF) and inflammatory mediators, which
function as paracrine regulators of neighbouring cell (endothe-
lial, SMC and epithelial) proliferation [88]. It has been
established that matrix proteins such as collagen, fibronectin
and proteoglycans play a prominent role in migration,
proliferation and differentiation [19]. It is therefore possible
that secretion of mitogenic factors by hypoxic fibroblasts
results in proliferation of neighbouring PASMC.

SUMMARY
Acute hypoxia has direct proliferative effects on pulmonary
artery fibroblasts but many in vitro studies have not shown this
effect in pulmonary artery smooth muscle or endothelial cells.
Quiescent pulmonary artery smooth muscle cells may require
a priming step for acute hypoxia-induced proliferation. Acute
hypoxia may decrease pulmonary artery endothelial cell
proliferation, but hypoxic endothelial cells and adventitial
fibroblasts can release factors that are mitogenic for smooth
muscle cells, and moderate-acute hypoxia can enhance the
proliferative effects of peptide growth factors and other
growth stimulants. It is feasible that endothelial cells or
fibroblasts may sense hypoxia and be a key determinant of
pulmonary artery smooth muscle cell proliferation.
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