Cryptogenic organising pneumonia or acute fibrinous and organising pneumonia?

To the Editors:

In a recent issue of the European Respiratory Journal, Chee et al. [1] present a case that was diagnosed and treated as cryptogenic organising pneumonia. We have a few comments about this case.

First, histology is described as follows: "...diffuse intra-alveolar exudate of granular, fibrinous material...". Organising pneumonia pattern, the histological hallmark of cryptogenic organising pneumonia, is characterised by intra-alveolar buds of granulation tissue. Recently, a new anatomo-clinical entity has been reported by Beasley et al. [2] as "acute fibrinous and organizing pneumonia (AFOP)". The clinical spectrum of this entity may be similar to cryptogenic organising pneumonia and, taking into account the morphological features on surgical lung biopsy specimens, in our opinion, the case reported by Chee et al. [1] is more consistent with this diagnostic hypothesis.

Secondly, the diagnostic approach described in the paper by Chee et al. [1] is dissimilar to that usually followed in our centre (GB Morgagni Hospital, Azienda USL di Forlì, Forlì, Italy). In patients with alveolar opacification shadows, bronchoscopy with bronchoalveolar lavage and transbronchial lung biopsy may contribute to a definitive diagnosis in >60% of cases [3, 4], with fine-needle aspiration being less sensitive and specific [5].

V. Poletti and G.L. Casoni
GB Morgagni Hospital, Azienda USL di Forlì, Forlì, Italy.

REFERENCES

From the author:

We thank V. Poletti and G.L. Casoni for their comments and interest in our case report [1]. Acute fibrinous and organising pneumonia is certainly a possible differential diagnosis in our patient. However, the patient's subacute presentation, dramatic response to steroids and clinical course were more in keeping with, and indeed typical of, cryptogenic organising pneumonia. In contrast, in the original series by Beasley et al. [2], of 17 patients with the histological diagnosis of acute fibrinous and organising pneumonia, nine patients had a fulminant course with rapid progression to death. Of the seven patients in this series who were treated with steroids (with or without antibiotics), only two survived. It should also be noted that the histological diagnosis of acute fibrinous and organising pneumonia was made from open lung and autopsy specimens in all cases.

C.B.E. Chee
Tan Tock Seng Hospital, Singapore.

REFERENCES

The immune response to resistive breathing

To the Editors:

The excellent review by Vassilikopoulos et al. [1] discusses in detail the immune response to resistive breathing. The authors report the systemic effects of resistive breathing (cytokines in plasma), as well as the effects of resistive loads on the respiratory muscles (diaphragm).

REFERENCES
1. Vassilikopoulos et al. [1]
To the extent that resistive breathing is a potent stimulus for upregulation of cytokines involved in the process of angiogenesis, a review dealing with the immune response to resistive breathing may present the angiogenetic response as well.

Exercise training induces a series of adaptive responses in the cardiovascular and skeletal muscular system, including myofibrillar protein changes, increased activity of oxidative and glycolytic enzymes, and an increased number of capillaries. Such changes in the capillary bed of skeletal muscles in athletes have been detected since the mid 1970s [2, 3]. Since then, angiogenesis has been studied extensively and found to be an extremely complex process involving, among others, the dissolution of the extracellular matrix underlying endothelium, cell migration and endothelial cell proliferation [4, 5]. Specific growth factors and predominantly vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-β1 were found to regulate the angiogenic response to a variety of stimuli [4]. A single bout of exercise upregulates the mRNA levels for the previously mentioned factors [6]. Recent data have shown that acute exercise upregulates the mRNA expression, while there is a graded response in the expression of mRNA of this angiogenic factor with the metabolic stress. Furthermore, it is demonstrated that mRNA for VEGF and bFGF in the diaphragm of rats rises significantly as a result of active increased ventilation due to hypoxia and/or hypercapnia, while no changes in mRNA levels were observed in paralysed, mechanically ventilated animals at similar arterial blood gases and ventilation levels [7, 8]. However, there is evidence that resistive breathing upregulates mRNA for VEGF, but not for bFGF and TGF-β1 [9].

Therefore, angiogenesis, as a result of loading of the respiratory system, is an important part of the integrated immune response to resistive breathing.

N.M. Siafakas* and I. Mitrouska*
*Medical School, University of Crete, and #University General Hospital of Heraklion, Heraklion, Crete, Greece.

REFERENCES

DOI: 10.1183/09031996.05.00018105

From the authors:

We would like to thank N.M. Siafakas and I. Mitrouska for their insightful comments about our recent article published in the *European Respiratory Journal* [1]. They suggest that resistive breathing may be a potent stimulus for upregulation of angiogenesis-promoting factors within the diaphragm.

Preliminary data (which have appeared only in abstract form) suggest that resistive breathing might lead to an upregulation of vascular endothelial growth factor (VEGF), but not basic fibroblast growth factor (bFGF) and transforming growth factor-β1 [2]. Other forms of increased diaphragmatic activation, such as hyperventilation induced by hypercapnia and/or hypoxia, lead to increased expression of the mRNA levels of both VEGF and bFGF [3]. This angiogenetic response was not solely caused by the deranged blood gases or by the hyperventilation-induced passive stretching and shortening of the diaphragm, since mechanical ventilation leading to similar blood gases levels did not result in a diaphragmatic angiogenetic response.

The stimuli for the expression of angiogenesis-promoting factors within skeletal muscles (in general) and respiratory muscles (in particular) remain elusive. Interestingly, in an *in vitro* cell culture system of skeletal myocytes fused into myotubes, reactive oxygen species stimulated the expression of VEGF [4] in a similar fashion to their effect of inducing interleukin-6 production [5]. This raises the interesting possibility that oxidative stress generated intramuscularly, secondary to increased muscular activation/contraction [6], might be the stimulus for both upregulation of cytokines and expression of an angiogenesis programme. Despite being sound, such a hypothesis has never been experimentally tested.

Angiogenesis is a prerequisite for the development of hypertrophy and hyperplasia, secondary to chronic exercise training in skeletal muscles. This might be important for the increased ventilation requirements of some elite athletes during athletic performance, although the benefit from additional specific respiratory muscle training is uncertain [7]. However, angiogenesis is even more important for the beneficial effects of rehabilitation programmes involving training of the respiratory muscles [8].

Our review focused on the response of the “classical” cytokines (those usually produced by blood mononuclear cells) to resistive breathing. This is why it did not cover other