Sniff nasal inspiratory pressure as a marker of respiratory function in motor neuron disease

Abstract: Vital capacity (VC) and maximum mouth pressures are often used to monitor respiratory function in motor neuron disease (MND), but require the use of a mouthpiece. Sniff nasal inspiratory pressure (SNIP) is a simple and reliable means of measuring inspiratory muscle strength; it does not involve the use of a mouthpiece and might therefore be better than VC or mouth pressures for assessing patients with bulbar disease.

Methods

Motor neuron disease (MND) is a progressive and devastating neurodegenerative condition characterized by wasting and weakness of affected muscle groups. The usual cause of death is respiratory failure due to increasing respiratory muscle weakness [1]. Respiratory function can be assessed via pulmonary function tests, such as measurement of vital capacity (VC) or forced VC. These decline with time and are a good method of gauging disease progression [2, 3]. Maximal mouth inspiratory (MIP) and expiratory pressure (MEP) have traditionally been used as a measure of inspiratory and expiratory muscle strength. These involve maximal efforts against an occlusion. However the manoeuvres are dependent on patient coordination and cooperation, and there is a considerable learning effect [4]. All of these tests are more likely to be unreliable in patients with significant bulbar disease who often have upper airway collapse or inability to close the mouth completely during the manoeuvre.

Motor neuron disease (MND) is a progressive and devastating neurodegenerative condition characterized by wasting and weakness of affected muscle groups. The usual cause of death is respiratory failure due to increasing respiratory muscle weakness [1]. Respiratory function can be assessed via pulmonary function tests, such as measurement of vital capacity (VC) or forced VC. These decline with time and are a good method of gauging disease progression [2, 3]. Maximal mouth inspiratory (MIP) and expiratory pressure (MEP) have traditionally been used as a measure of inspiratory and expiratory muscle strength. These involve maximal efforts against an occlusion. However the manoeuvres are dependent on patient coordination and cooperation, and there is a considerable learning effect [4]. All of these tests are more likely to be unreliable in patients with significant bulbar disease who often have upper airways dysfunction [5], and may experience difficulty inserting or gripping the mouthpiece.

Measurement of sniff nasal inspiratory pressure (SNIP) is a simple, reliable and reproducible test for assessing inspiratory muscle strength [6-8]. There is a learning effect, but it does not require a mouthpiece and involves a more natural manoeuvre than do measurements of VC, MIP and MEP. The relationship between SNIP and VC was studied and the value of SNIP measurement in patients with MND compared with measurements of VC, MIP or MEP in predicting critical respiratory muscle weakness as indicated by an arterial carbon dioxide tension (P_{a,CO_2}) >6 kPa.
SNIPs were then expressed as a percentage of the predicted value using the equation described by ULDRY and FITTING [11].

VC was recorded using a wedge bellows spirometer (Vitalograph, Maid’s Moreton, UK) with the patient seated. A nose clip was applied during the expiratory phase of the manoeuvre. The highest of three results was recorded. A tight fitting face mask (Respironics, Medic-Aid, Bognor Regis, UK) was used in patients who were unable to insert the mouthpiece. As with SNIP, the results were expressed as a percentage of the predicted value [12]. Maximal mouth pressures were measured with the patient seated using a flanged mouthpiece, which was attached via a plastic tube to the same hand-held meter. The plastic tube had a 22-gauge leak to prevent glottic closure. The nose was occluded with a nose clip during the procedure. MIPs were obtained by asking the patient to perform an inspiratory effort from total lung capacity with the hands pressed against the cheeks. The patient performed an expiratory effort from residual volume. For measurement of MEP, a face mask was applied during the expiratory phase of the manœuvre. The highest of three results was recorded. A tight fitting face mask (Respironics, Medic-Aid, Bognor Regis, UK) with the patient seated. A nose clip was applied during the expiratory phase of the manœuvre. MIPs were obtained by asking the patient to perform an inspiratory effort from total lung capacity with the hands pressed against the cheeks. The highest of three results was recorded. A tight fitting face mask (Respironics, Medic-Aid, Bognor Regis, UK) was used in patients who were unable to insert the mouthpiece. As with SNIP, the results were expressed as a percentage of the predicted value [13].

Statistical analysis was performed using Arcus Quickstat for Windows (Addison Wesley Longman, Cambridge, UK). The Mann-Whitney U-test was used to compare mean data in different subgroups. Spearman’s rank correlation coefficient (r) was used to examine the relationships between SNIP, MIP, MEP, VC and P_aCO_2. Linear regression and multivariate analysis allowed the relationships between individual measurements and P_aCO_2 to be defined. A p-value < 0.05 was taken as significant.

Table 1. – Anthropometric data in patients with bulbar and nonbulbar disease

<table>
<thead>
<tr>
<th></th>
<th>Bulbar</th>
<th>Nonbulbar</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects n</td>
<td>31</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Age yrs</td>
<td>61.5±15.2</td>
<td>59.3±10.5</td>
<td>NS</td>
</tr>
<tr>
<td>Sex M/F</td>
<td>18/13</td>
<td>26/2</td>
<td>0.01</td>
</tr>
<tr>
<td>BMI kg m⁻²</td>
<td>23.6±3.1</td>
<td>24.7±4.6</td>
<td>NS</td>
</tr>
<tr>
<td>Disease duration months</td>
<td>26.3±23.7</td>
<td>23.7±11.4</td>
<td>NS</td>
</tr>
</tbody>
</table>

Data are presented as mean±sd. M: male; F: female; BMI: body mass index.

Table 2. – Results in patients with bulbar and nonbulbar disease

<table>
<thead>
<tr>
<th></th>
<th>Bulbar</th>
<th>Nonbulbar</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC % pred</td>
<td>52.3±21.9</td>
<td>75.4±21.9</td>
<td><0.001</td>
</tr>
<tr>
<td>SNIP % pred</td>
<td>30±14.3</td>
<td>46.2±24.1</td>
<td>0.01</td>
</tr>
<tr>
<td>MIP % pred</td>
<td>15.7±10.4</td>
<td>34.1±22.2</td>
<td><0.001</td>
</tr>
<tr>
<td>MEP % pred</td>
<td>19.4±10.3</td>
<td>56.6±37.8</td>
<td><0.001</td>
</tr>
<tr>
<td>P_aCO_2, kPa</td>
<td>5.30±1.1</td>
<td>5.17±1.2</td>
<td>NS</td>
</tr>
</tbody>
</table>

Data are presented as mean±sd. VC: vital capacity; SNIP: sniff nasal inspiratory pressure; MIP: maximal inspiratory mouth pressure; MEP: maximal expiratory mouth pressure; P_aCO_2: arterial carbon dioxide tension.

Results

Of the 59 patients, 31 had bulbar and 28 nonbulbar disease. Their anthropometric data are shown in table 1. There were no significant differences between the two groups in respect of age, body mass index (BMI) and disease duration but there was a male preponderance in the nonbulbar group.

Table 2 shows the results of vital capacity, respiratory muscle strength and P_aCO_2 measurement. All values other than P_aCO_2 were significantly greater in the nonbulbar group.

Ten patients (five bulbar, five nonbulbar) had a P_aCO_2 of ≥ 6 kPa. They had significantly lower SNIPs and VCs but similar MIPs and MEPs to normocapnic patients (table 3).

Figure 2a and b shows the relations between VC and P_aCO_2 in nonbulbar and bulbar patients. The regression equation for nonbulbar patients was $P_aCO_2=16.34 - 2.61$ ln VC, but there was no statistically significant regression line in the bulbar group. Figure 3a and b shows the relations between SNIP and P_aCO_2. As for VC, this was only significant in patients with nonbulbar disease, the regression equation being $P_aCO_2=10.48 - 1.44$ ln SNIP.

Neither MIP nor MEP were significantly related to P_aCO_2. Receiver operating characteristic curves were constructed in order to define the optimum cut-off points for predicting hypercapnia. AVC of £49% and an SNIP of £26% were predictive. The sensitivity (90%) and specificity (73.5%) of these values were the same for both VC and SNIP.

Figure 4a and b shows the relations between SNIP and VC in patients with nonbulbar and bulbar disease. The regression equation in nonbulbar patients was VC=28.7 ln SNIP-28.81. In bulbar patients, it was VC=0.83 SNIP+26.99.

Table 3. – Measurements in normocapnic and hypercapnic patients

<table>
<thead>
<tr>
<th>$P_aCO_2<6$ kPa</th>
<th>$P_aCO_2≥6$ kPa</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects n</td>
<td>49</td>
<td>10</td>
</tr>
<tr>
<td>VC % pred</td>
<td>67.1±24.4</td>
<td>46.7±14.6</td>
</tr>
<tr>
<td>SNIP % pred</td>
<td>40.8±21.3</td>
<td>22±9.6</td>
</tr>
<tr>
<td>MIP % pred</td>
<td>25.3±20.3</td>
<td>20.3±13.7</td>
</tr>
<tr>
<td>MEP % pred</td>
<td>28.5±23.9</td>
<td>26.9±17.7</td>
</tr>
</tbody>
</table>

Data are presented as mean±sd. P_aCO_2: arterial carbon dioxide tension; VC: vital capacity; SNIP: sniff nasal inspiratory pressure; MIP: maximal inspiratory mouth pressure; MEP: maximal expiratory mouth pressure.
Discussion

The sniff test has been used for many years during radiographic screening of diaphragmatic movement. Measurement of oesophageal and gastric pressures during sniffs was described by Miller et al. [14]. Recently SNIP has been introduced as a noninvasive index of inspiratory muscle strength, with a normal range formulated according to age and sex.

This study demonstrates that, in patients with normal bulbar function, SNIP is related to VC in a curvilinear fashion. The relation between VC and respiratory muscle strength was described by Braun et al. [15] in patients with other neuromuscular disease, and attributed to the sigmoid shape of the pressure volume curve of the respiratory system. A similar relation has also been observed in MND [16–18]. SNIP measurement could therefore be of value in detecting involvement of the respiratory muscles at an early stage, when VC is well preserved.

The relation between VC and SNIP appeared to be linear in the present patients with bulbar disease, and the correlation was less close. The authors’ original hypothesis was that these patients would be better able to perform SNIP than VC manoeuvres, and that there would be a subgroup in whom SNIP was well preserved but VC was spuriously low. This was not the case, and bulbar patients were poor at performing SNIP, VC and maximum mouth pressure manoeuvres. The fact that similar numbers of patients were hypercapnic in the bulbar and nonbulbar groups argues against the possibility that the bulbar patients had more severe respiratory muscle involvement as the explanation for their low results. The authors feel that this reflects the problems that they experienced in performing the manoeuvres, mainly because of difficulty in sealing the mouth. Other factors possibly contributing to the low values in bulbar patients include upper airway collapse and dysco-ordinated/dyspractic contraction of the various respiratory and upper airway muscles during the tests, both of which would mainly affect dynamic manoeuvres such as the sniff test. Bulbar dysfunction, as indicated by abnormalities in the flow/volume loop, has previously been noted to have either no effect on maximum mouth pressure [5], or to be associated with a reduction in the values obtained [19].

Despite these reservations, in the present patients, SNIP was better than MIP or MEP in identifying patients with hypercapnia. Polkey et al. [20] showed that hypercapnia is related to inspiratory rather than expiratory strength. Compared to MEP or indeed VC, to which both expiratory and inspiratory muscles contribute, SNIP and MIP might be expected to correlate more closely with P_a,CO_2. The present failure to demonstrate a relationship between MIP and P_a,CO_2 could be explained by the patients finding the SNIP manoeuvre easier to perform, or by differences in the pattern of muscle recruitment during these two different manoeuvres [21].

Sniff nasal inspiratory pressure monitoring is a simple and easy alternative to vital capacity which could be used to monitor respiratory muscle function in patients with

![Fig. 2. Relations between arterial carbon dioxide tension (P_a,CO_2) and vital capacity (VC) in patients with: a) nonbulbar disease (regression line: P_a,CO_2=16.34-2.61lnVC; R^2=0.49, r=-0.44, p<0.05); and b) bulbar disease (NS).](image1)

![Fig. 3. Relations between arterial carbon dioxide tension (P_a,CO_2) and sniff nasal inspiratory pressure (SNIP) in patients with: a) nonbulbar disease (regression line: P_a,CO_2=10.48-1.44lnSNIP; R^2=0.49, r=-0.6, p<0.01); and b) bulbar disease.](image2)
motor neuron disease. Patients with a sniff nasal inspiratory pressure of <30% of the predicted value are at risk of developing hypercapnia and should have their arterial blood gas levels measured. Vital capacity remains the best index of respiratory function in this disease; it is insensitive to early respiratory muscle involvement, but, in clinical practice, this is not a major disadvantage. Patients with motor neuron disease being assessed in respiratory clinics or the lung function laboratory should have both vital capacity and sniff nasal inspiratory pressure measured.

References