A simplified method for monitoring respiratory impedance during continuous positive airway pressure

ABSTRACT: The forced oscillation technique is useful in detecting changes in upper airway obstruction in patients with sleep apnoea undergoing continuous positive airway pressure (CPAP) ventilation. The aim of this study was to implement and evaluate a method for estimating respiratory impedance (Zrs) from the pressure and flow recorded at the inlet of the CPAP tubing.

The method is based on correcting impedance measured at the inlet of the CPAP tubing (Zi) for the effect of the tubing and the exhalation port. The method was evaluated in mechanical analogues and in a healthy subject. Sinusoidal oscillation of 5, 10 and 20 Hz were superimposed on CPAP (5–15 cmH2O).

At 5 Hz, the changes in airflow obstruction were substantially underestimated by Zi. Furthermore, Zi exhibited a negative dependence on Zrs at 20 Hz. The assessment of Zrs was greatly improved after correcting Zi for the effects of the CPAP tubing and the exhalation port. Zrs was well estimated at low frequencies, reaching very high values during total occlusion (>60 cmH2O·s·L⁻¹ at 5–10 Hz).

These results indicate that changes in airflow obstruction can be detected using the forced oscillation technique from pressure and flow recorded on the continuous positive airway pressure device. This facilitates the clinical application of the forced oscillation technique for monitoring upper airway patency during sleep.

The forced oscillation technique (FOT) is a noninvasive approach for measuring respiratory impedance (Zrs) [1–4]. The technique is based on applying low-amplitude pressure oscillation to the airway opening and computing Zrs as the complex ratio between oscillatory pressure and flow. During sleep, the oscillation is applied to the nose of the patient by means of a nasal mask and Zrs is computed from the pressure and flow recorded at the entrance to the nasal mask. It has been recently demonstrated that Zrs measured by means of the FOT is a sensitive index for assessing airway obstruction during sleep apnoea both for diagnosis [5] and during continuous positive airway pressure (CPAP) treatment [6, 7]. Moreover, Zrs can be readily computed in real time, providing a continuous index of airway obstruction, which can be included on-line in polysomnographic recordings [8]. Furthermore, the pressure oscillation can be generated by the CPAP device, obviating the need for using an external forced oscillation generator [9, 10]. Therefore, the FOT seems very well suited to monitoring airway patency and for automatic CPAP titration.

Nasal pressure and flow can be measured in the sleep laboratory by placing a pneumotachograph and a pressure transducer at the entrance to the nasal mask. However, this procedure hinders the use of the FOT in sleep studies and CPAP treatments in the patient’s home. Thus, the aim of this study was to implement and evaluate a method for estimating Zrs from pressure and flow recorded at the inlet of the CPAP tubing. The method is based on correcting the impedance measured at the inlet of the CPAP tubing (Zi) for the effect of the tubing and the exhalation port. First, the CPAP tubing was characterized as a linear T-network circuit and the exhalation port as a pressure-dependent impedance. Subsequently the method was evaluated by connecting a conventional CPAP system to mechanical analogues featuring different degrees of airflow obstruction. Finally, the suitability of the method for detecting sudden changes in airway patency in a healthy subject performing voluntary upper airway occlusion manoeuvres was tested.

Methods

Experimental set-up

CPAP was generated via a conventional device (REM+; Société NellcorPuritan-Bennett. Nancy, France) attached to flexible tubing of 2.0 cm internal diameter (ID) and 180 cm in length (fig. 1). Forced oscillation was superimposed on the CPAP by means of a loudspeaker (600W, 800GT1; JBL, Northridge, CA, USA) connected to the inlet of the hose. The rear part of the loudspeaker was enclosed in a 5-L chamber so as to withstand the continuous positive pressure of the circuit [11]. Indeed, because of the low
the maximum CPAP applied (15 cmH₂O) displaced the
oscillatory pressure/flow relationships can be expressed
(≤2%) and phase (≤2°) transducers were
tubing and at the entrance of the nasal mask (fig. 2).
Therefore provided that the T-network impedances of
the CPAP tubing and the Zport are known Zs can be
estimated from the pressure and flow measured in the
CPAP device.

Experimental protocol

First, the CPAP tubing and the exhalation port were
characterized. The static elastance of the CPAP tubing (gas and walls) was measured by occluding its extremities and
injecting 10 mL of air using a syringe. The T-network
impedances were determined by connecting the outlet of
the CPAP system to a resistor of 11 cmH₂O·s·L⁻¹ built with
10 layers of 25-μm mesh wire screen. Low amplitude (≤1
cmH₂O) pressure oscillations of 5, 10 and 20 Hz were
sequentially superimposed on a CPAP level of 10 cmH₂O.
Zs and Zs were computed (Equations 3 and 4) from 16 s of
pressure and flow recorded at the input (Pi, Vi) and output
(Po, Vo) of the CPAP tubing. Since Po was measured
beyond the pneumotachograph placed at the outlet of the
CPAP tubing, the values of the ratio Po/Vo (Equations 3
and 4) were corrected for the impedance of the pneumo-
tachograph. The Zport was measured by occluding the
outlet of the CPAP system and sequentially applying
sinusoidal oscillations of 5, 10 and 20 Hz at CPAP levels of
0, 5, 10 and 15 cmH₂O. In these experiments, the flow was
measured with the V’ pneumotachograph attached to the

Respiratory impedance estimation

Zs was estimated from Zi by correcting it for the effect
of both the CPAP tubing and the exhalation port. The
CPAP tubing can be considered as a passive two-port
system. Assuming linearity and taking into account the
symmetry of the tubing, the two-port system is equivalent
to a T-network circuit [13] with a shunt impedance (Zsh)
between two identical series impedances (Zs) (fig. 2).
Solving the impedance network for Pi and Po, the
oscillatory pressure/flow relationships can be expressed as [13]:

\[
\begin{align*}
\pi_i &= (\text{Z}_{\text{sh}} + Z_s) V_i - \text{Z}_{\text{sh}} \times V_o \\
\pi_o &= Z_{\text{sh}} \times V_i - (\text{Z}_{\text{sh}} + Z_s) \times V_o
\end{align*}
\]

Fig. 1. – Schematic diagram of the experimental set-up. LS: loud-
speaker; EP: exhalation port; CPAP: continuous positive airway
pressure; \(V_i \), \(V_o \) and \(V' \): flow at the inlet and outlet of the CPAP
tubing and at the entrance of the nasal mask; \(\pi_i \), \(\pi_o \) and \(\pi \): pressure at the
inlet and outlet of the CPAP tubing and at the entrance of the nasal mask.

respectively, they may be rewritten as:

\[
\begin{align*}
\text{Z}_{\text{sh}} &= \frac{Z_i + Z_o}{((V'_i/V'_i) - (V'_o/V'_o))} \\
Z_s &= Z_i/(1 + V'_o/V'_i) - (1 + V'_i/V'_o),
\end{align*}
\]

where \(Z_i = P_i/V'_i \) and \(Z_o = P_o/V'_o \) are the impedances
measured at the inlet and outlet of the CPAP tubing,
respectively. The value of Zs and Zsh can be determined
from these equations by measuring \(Z_i, Z_o \) and \(V'_i V'_o \) with
the system connected to an arbitrary load impedance.

Solving Equations 3 and 4 for \(Z_o \)

\[
Z_o = (Z_{\text{sh}}^2/(Z_s + Z_s - Z_i)) - Z_{\text{sh}} - Z_s
\]

The exhalation port can be characterized as a nonlinear
impedance (Zport) connected in parallel to Zsh (fig. 2). Hence,

\[
Z_{\text{rs}} = Z_o \times Z_{\text{port}}/Z_{\text{port}} - Z_o
\]

Compliance of the gas in the chamber (~5 mL·cmH₂O⁻¹)
the maximum CPAP applied (15 cmH₂O) displaced the
loud-speaker cone by only ~3 mm, which kept the cone
within its operating range. The outlet of the CPAP tubing
was connected to an exhalation port, which was con-
bstructed by drilling an orifice of 4 mm in diameter in the
wall of a rigid tube of 2.5 cm ID and 7 cm in length. This
orifice had a well-defined pressure/flow relationship with
nonlinear resistance similar to that of other commonly
used exhalation ports. The outlet of the CPAP system was
attached to a nasal mask. For measurements in the me-
chanical analogous, the nasal mask was removed and the
outlet of the CPAP system connected to the analogue
dby means of a short piece of tubing of 2 cm ID. Flow at the
inlet (\(V'_i \)) and outlet (\(V'_o \)) of the CPAP tubing and at
the entrance of the nasal mask (\(V' \)) were measured with
Fleisch No. 2 pneumotachographs (Metabo, Epalinges,
Switzerland) connected to differential piezoresistive tran-
sducers (±35 cmH₂O, 176PC/14; Honeywell, Freeport,
IL, USA). Similar transducers were used for measuring
pressure at the inlet (\(P_i \)) and outlet (\(P_o \)) of the CPAP
tubing and at the entrance of the nasal mask (\(P \)).
The common mode rejection ratios (CMRRs) of the flow
transducers were >60 dB at 32 Hz [12]. The flow and
pressure-measuring systems were matched in amplitude
(±2%) and phase (±2°) up to 32 Hz.

\[
\begin{align*}
\varphi_i &= (Z_{\text{sh}} + Z_s) V_i - Z_{\text{sh}} \times V_o \\
\varphi_o &= Z_{\text{sh}} \times V_i - (Z_{\text{sh}} + Z_s) \times V_o
\end{align*}
\]

V’ Tubing
\[Z_s \]
\[Z_{\text{sh}} \]
\[Z_{\text{port}} \]
\[Z_o \]

Fig. 2. – Equivalent circuit to the experimental set-up of the continuous
positive airway pressure system (CPAP) system. \(Z_s \) and \(Z_{\text{sh}} \): series
and shunt impedances of the T-network model of the CPAP tubing; \(Z_{\text{port}} \):
impedance of the exhalation port; \(Z_s \): respiratory impedance; \(V'_i \) and
\(V'_o \): flow at the inlet and outlet of the CPAP tubing; \(P_i \) and \(P_o \): pressure
at the inlet and outlet of the CPAP tubing.
lateral port in order to accurately measure the flow through the orifice by avoiding gas compression effects. The pressure/flow relationship of the exhalation port was also measured under constant flow conditions (without oscillation) by continuously increasing the CPAP level from 0 to 20 cmH2O.

The correction method was first evaluated by occluding the outlet of the CPAP system. Next, the CPAP system was connected to three resistors (R1, R2 and R3) ranging ~5–20 cmH2O·s·L−1. The lower resistors (R1 5.5 cmH2O·s·L−1, R2 11 cmH2O·s·L−1) were made with several layers of 25-μm mesh wire screen. The higher resistor (R3 22 cmH2O·s·L−1) was made with a hollow cylinder of porous ceramic. Since the CPAP blower could not achieve 15 cmH2O when connected with a hollow cylinder of porous ceramic. Since the CPAP blower could not achieve 15 cmH2O when connected to R1 and R2 the outlet of these resistors were attached to a plastic container with an elastance of 20 cmH2O.

Finally the method was tested during voluntary manoeuvres of upper airway occlusion performed by an awake healthy subject. In these measurements, R1 was placed between the pneumotachograph (V) and the nasal mask in order to achieve nasal impedance values similar to those reported in healthy subjects during sleep [14, 15]. In each of the above experimental conditions, 16 s of low amplitude (+1 cmH2O) pressure oscillations of 5, 10 and 20 Hz at CPAP levels of 5, 10 and 15 cmH2O were applied.

Data processing

The pressure and flow recordings were digitized at a rate of 16 points per oscillation cycle (80, 160 and 320 Hz) using a microcomputer (12-bit AD/DA board; 486-type personal computer). The real (resistance (R)) and imaginary (reactance (X)) parts of the sinusoidal components of the pressure and flow recordings were computed on a cycle by cycle basis from the Fourier coefficients at the forcing frequency [11]. Impedances were computed as the complex ratio between the corresponding pressure and flow recordings. Impedance data were digitally corrected for the time constant of the pneumotachograph. Zrs was estimated (Zrs*) by correcting Zr for the effects of the T-network and exhalation port according to Equations 5 and 6. Zs, Zs* and Zs* are reported as their modulus computed as (R²+X²)½. The impedance results obtained in the mechanical analogues are given as their mean values over the 16 s of forced oscillation.

Results

The CPAP tubing had a static elastance of 1.146 cmH2O·L−1. The T-network impedances are shown in figure 3. The Zsh was mostly elastic with a negative shunt reactance (Xsh) which rose inversely with frequency from -40.0 cmH2O·s·L−1 at 5 Hz to -9.9 cmH2O·s·L−1 at 20 Hz. Nevertheless, Zsh exhibited a small negative shunt resistance (Rsh), which increased slightly with frequency approaching zero at 20 Hz. Conversely, the Zs showed an inertive behaviour with a positive series reactance (Xs) which increased linearly with frequency reaching 4.5 cmH2O·s·L−1 at 20 Hz. The series resistance (Rs) was small and positive at low frequencies, becoming slightly negative at 20 Hz.

The exhalation port exhibited marked nonlinear resistance under both constant and oscillatory flows (fig. 4). The pressure/flow relationship measured at constant flow showed quadratic flow dependence (P = K V²) where K is a constant 82 cmH2O·s·L−2. Thus, constant flow resistance at the outlet of the CPAP tubing (Rs) computed as dP/dV, increased linearly with flow (Rs = 2K(V) and linearly with the square root of pressure (Rs = 2K0.5). The real part of Zport (Rport) exhibited the same flow and pressure dependence as Rs. At a CPAP of 0 cmH2O, the port showed low resistance (Rport ~ 6 cmH2O·s·L−1), but rose sharply to very high values when CPAP was applied. This marked CPAP dependence of Rport contrasts with the small changes observed when oscillatory frequency was varied. The reactance of Zport (Xport) also showed little dependence on frequency. The exhalation port behaved as a pure resistance at CPAP of 0 cmH2O (Xport=0 cmH2O·s·L−1) but exhibited a slight positive reactance with CPAP.

The impedances of the mechanical analogues were greatly misestimated by Zs (fig. 5a). At 5 Hz, Zs slightly overestimated load impedance for Zs <10 cmH2O·s·L−1.
and substantially underestimated it for higher loads, reaching ~30 cmH$_2$O s$^{-1}$ during occlusion. Thus, although Z_i rose with increasing load, the change in Z_i between the lowest load and occlusion was limited to ~25 cmH$_2$O s$^{-1}$. This over- and underestimation for low and high loads, respectively, was more marked at 10 Hz, which further narrowed the range of Z_i to ~8 cmH$_2$O s$^{-1}$ (from 9 to 17 cmH$_2$O s$^{-1}$). At 20 Hz, the artefact was so important that Z_i exhibited a negative dependence on Z_o. In contrast, with the marked frequency dependence of the Z_i/Z_o relationship, it depended very little on CPAP (fig. 5b).

The assessment of Z_o was greatly improved after correcting Z_i for the effects of the CPAP tubing and the exhalation port. Figure 6a depicts the accuracy of impedance estimates obtained at a CPAP of 10 cmH$_2$O. Similar results were found at 5 and 15 cmH$_2$O. Z_o was very well estimated at low frequencies. At 5–10 Hz Z_o* attained very high values (>60 cmH$_2$O s$^{-1}$) during occlusion, which expanded the range of Z_o* variation, thereby improving substantially the detection of airflow obstruction. The correction procedure also improved Z_o estimation at 20 Hz, converting the paradoxical negative load dependence of Z_i into the positive linear dependence of Z_o*. Nevertheless, some underestimation still remained at this high frequency after correcting Z_i for the effects of the CPAP tubing and the exhalation port. In order to ascertain which of these two factors caused this underestimation, (Fig. 6b) the measured Z_o were compared with those estimated from Equation 5 (Z_o*). Accurate estimation of Z_o was found for all frequencies and pressures, indicating that the CPAP tubing behaved linearly and that the T-network correction performed very well. Thus, the underestimation of Z_o at high frequencies should be attributed to the correction of Z_i for Z_{port} (Equation 6).

The Z$port$ estimated from the Z_o and the Z_o (Equation 6) during occlusion at 10 cmH$_2$O fell with increasing frequency from 48.2 cmH$_2$O s$^{-1}$ at 5 Hz to 11.4 cmH$_2$O s$^{-1}$ at 20 Hz. This marked negative frequency dependence contrasts with the small change observed when Z_{port} was computed by measuring the flow through the orifice (fig. 4).

Figure 7 depicts the assessment of changes in Z_o during voluntary occlusion manoeuvres at a CPAP of 10 cmH$_2$O. Similar results were found at other CPAP levels. Airway occlusion resulted in a sharp increase in Z_i, which magnitude decreased with increasing frequency. In agreement with the data shown in figure 6, at low frequency Z_i was similar to Z_o during breathing, but the high values reached by Z_o during occlusion had only a modest effect on Z_i. The assessment of Z_o via Z_i worsened with increasing frequency. Occlusion produced
negligible changes in Z_i at 10 Hz or even a fall in Z_i at 20 Hz. Correction of Z_i for the effect of the CPAP tubing and exhalation port substantially improved airflow obstruction assessment. Indeed, Z_s attained high values during apnoea at low frequencies (5–10 Hz), allowing clear detection of airflow occlusion. At higher frequency Z_s exhibited a downward shift but the paradoxical behaviour of Z_i was reversed and changes in Z_s paralleled those in Z_i.

Discussion

Z_s can be readily measured during sleep by applying forced oscillation to the nose via CPAP tubing connected to the nasal mask. Long and flexible tubing is used in order to minimize sleep disturbance and to improve the patient’s compliance. Nasal pressure and flow can be accurately recorded using pneumotachographs and pressure transducers placed at the entrance to the nasal mask. Although the location of these transducers at the entrance to the mask is not a significant drawback in the hospital sleep laboratory, it impedes the use of the FOT in the patient’s home. This study showed that Z_s can be reliably estimated at low frequencies from the pressure and flow recorded at the inlet of the CPAP tubing by correcting for the effect of the tubing and the exhalation port, characterized as a linear T-network circuit and by a pressure-dependent impedance, respectively.

The simplest approach to estimating Z_s from the pressure and flow recorded at the inlet of the CPAP tubing is to assume that the effect of the tubing and the exhalation port is negligible and, thus, that $Z_s \approx Z_i$. In contrast to this assumption, substantial discrepancies between Z_s and Z_i were found when using a conventional tubing (2 cm ID, 180 cm in length) and an exhalation port (pressure-dependent resistance). At the lowest frequency (5 Hz), Z_i exhibited a narrow range of variation between normal airflow resistance and total occlusion (figs. 5 and 7), which limits its sensitivity for detecting changes in airway patency. The effect of the tubing and the port increased with frequency, resulting in a paradoxical inverse relationship between Z_i and Z_s at 20 Hz. Yen et al. [10] have recently suggested that Z_s be estimated using the ratio P_i/V_i, assuming that V/V_i is high. In particular, during occlusion at 5 Hz, the amplitude of V_i was ~10 times higher than that of V and, thus, P_i/V_i overestimated Z_s by the same factor. The present findings demonstrate, therefore, that the effects of the hose and the port must be taken into account, even with low frequency oscillation, in order to accurately estimate Z_s from pressure and flow recorded in the CPAP device. An alternative approach of measuring Z_s without flow recording has been recently described [16]. The method uses a small mechanical pump to inject 20 Hz oscillatory flow at the inlet of the nasal mask. Z_s is estimated from the pressure recorded at the nasal mask assuming that the impedance of the CPAP tubing is very high compared with Z_s. In contrast to this hypothesis, the present data (fig. 3) show that the load impedance of CPAP tubing (Z_s+Z_h) can fall to ~10 cmH$_2$O at 20 Hz, which is comparable to the Z_s reported at similar frequencies (16 Hz) in patients with obstructive sleep apnoea syndrome.

The CPAP tubing was characterized as a symmetrical T-network circuit. Given that the wave propagation equations for cylindrical rigid wall tubes [17, 18] are not applicable to a flexible hose. Its T-network impedances were empirically determined by connecting the system to a reference
load. The tubing was loaded with a mid-range resistor (11 cmH$_2$O·L$^{-1}$) in order to improve the signal to noise ratio of this calibration. The close agreement found between Z_0^* and Z_0 (fig. 6b) at a wide range of pressures (5–15 cmH$_2$O) demonstrated the suitability of the T-network for modelling conventional CPAP tubing subjected to 5–20 Hz oscillations. The serial element of the T-network (fig. 2) mainly reflected the inertia of the gas inside the tubing. Indeed, the effective inertia of the series elements computed as $2Xs/\omega_0$ (0.072 cmH$_2$O·s$^{-1}$·L$^{-1}$), agreed with the predicted gas inertia of the tubing (0.075 cmH$_2$O·s$^{-1}$·L$^{-1}$). The shunt element exhibited elastic behaviour. The small negative Z_i found at low frequencies (fig. 2) could be an effect of the finite CMRR of flow transducers [12]. Shunt elastance ($-Xs/\omega = 1,250$ cmH$_2$O·L$^{-1}$) was substantially lower than the gas elastance of the tubing ($2,560$ cmH$_2$O·L$^{-1}$). However, shunt elastance compared well with the static elastance of the gas and the walls (1,146 cmH$_2$O·L$^{-1}$). This demonstrates that wall properties cannot be neglected when considering the effect of the CPAP tubing on impedance measurements. The low total series impedance of the hose at 5 Hz and the close agreement between Z_i and static elastance indicate that the method can be further simplified at low frequencies by neglecting Z_s and characterizing Z_i as the elastance of the gas and the walls. Such simplification resulted in an overestimation of Z_{is} i.e., 1 cmH$_2$O·s$^{-1}$·L$^{-1}$ at 5 Hz, which could provide sufficient accuracy for several clinical applications.

The exhalation port is placed at the entrance to the nasal mask in order to generate a continuous flow to exhaust of CO$_2$ from the patient circuit during CPAP treatment. Commonly used ports have nonlinear resistance, which reduces the CPAP dependence of the bias flow. In the present study, a 4-mm orifice was used and taken as representative of these nonlinear exhalation ports (fig. 4). Z_{port} was determined by directly recording the pressure drop and the flow through the orifice. Z_{port} was mainly resistive with good agreement between oscillatory and constant flow resistance (fig. 3). Z_{port} was used to correct the impedance estimated at 5–10 Hz (fig. 6a), showing that the assumption regarding the parallel combination of Z_{port} and Z_s is reasonable at low oscillatory frequencies. However, Z_{is} was substantially underestimated at 20 Hz, which indicates that the turbulent flow regimen induced by this nonlinear port caused a complex interaction between oscillation and bias flow. This resulted in an apparent reduction in Z_{port} at high frequencies. Although this underestimation does not hinder the application of the method for qualitatively monitoring relative changes in Z_{is}, the present findings suggest the use of a low oscillatory frequency when the pressure and flow are recorded at the inlet of the hose. Moreover, low frequency minimizes the effect of the upper airway, thus optimizing the sensitivity of the FOT in assessing airway patency [11].

The present method allows reliable estimation of changes in airflow obstruction using transducers placed by the CPAP device. In agreement with recommendations for the FOT [19], the method was assessed using well-characterized mechanical analogues and care taken to completely avoid leaks. At low frequencies, Z_{is}^* increased linearly with Z_i and achieved values >50–60 cmH$_2$O·s$^{-1}$·L$^{-1}$ during total occlusion. This can be taken as the practical limit for impedance measurements in sleep apnoea patients. Indeed, Z_{is} does not rise to higher values during total airway collapse because of the leaks through the nasal mask and the shunt of the upper airway wall [5, 6]. Moreover, accurate measurements of higher impedances would require a better CMRR than that of the currently available transducers [12]. Therefore, Z_{is}^* measured at 5–10 Hz could have a similar sensitivity to Z_{is} in monitoring airway obstruction during sleep apnoea. These low frequencies provide enough time resolution to detect sudden changes in upper airway patency and to track phasic variation in impedance during the breathing cycle [6].

The performance of the method was assessed during CPAP application with a long hose and nonlinear exhalation port. These are the most difficult experimental conditions. A shorter hose would reduce the difference between Z_i and Z_s. Using an exhalation port with linear resistance would simplify the correction and could improve the reliability of Z_{is} estimation at high frequencies. Moreover, since the CPAP tubing exhibited linear behaviour, a linear resistance would allow multifrequency measurements to be carried out. The FOT has also been applied to the evaluation of sleep apnoea syndrome in patients breathing at atmospheric pressure [5]. In this case, the exhalation port is replaced by bias tubing acting as a pneumatic low-pass filter. Owing to the linear behaviour of this bias tubing, its input impedance can be easily calibrated and used in Equation 6 to compute Z_{is}. Therefore, this method of correction can be applied to patients undergoing CPAP treatment as well as to patients breathing at atmospheric pressure. It should be noted, however, that studies requiring high-frequency or very accurate measurement of Z_{is} may necessitate the location of the transducer within the nasal mask. The performance of the method was assessed by comparing the impedance estimated from the pressure and flow recorded at the inlet of the CPAP tubing with the value measured at the inlet of the mask. The method can, therefore, be used with any kind of nasal or facial mask. The calibration of the CPAP tubing and the exhalation port can be easily performed using additional flow and pressure transducers and a linear resistor, which can be precalibrated with the same set-up. Furthermore, since the behaviour of the tubing and the port is determined by their physical characteristics, calibration data can be used with any other unit of the same type.

In conclusion, the present findings suggest that airway obstruction can be reliably assessed using low-frequency forced oscillation (5–10 Hz) by estimating respiratory impedance from the pressure and flow recorded at the inlet of the continuous positive airway pressure tubing. This method could facilitate the use of the forced oscillation technique in the patient’s home for monitoring upper airway patency during sleep and for automatic adjustment of the continuous positive airway pressure level.

References
or without sleep apnoea syndrome. Am J Respir Crit Care Med 1997; 156: 522–527.