Effects of formoterol in apparently poorly reversible chronic obstructive pulmonary disease

B.L.P. Maesen, C.J.J. Westermann, V.A.M. Duurkens, J.M.M. van den Bosch

ABSTRACT: This randomized, double-blind, placebo-controlled, crossover study was designed to investigate the effects of the long-acting β_2-adrenoceptor agonist formoterol fumarate in 12 current or ex-smokers having chronic obstructive pulmonary disease, with a mean forced expiratory volume in one second (FEV1) 47% of predicted, poorly reversible (5.1% pred) after terbutaline sulphate inhalation.

After inhaling a single dose of formoterol (6 or 24 μg), or placebo via Turbuhaler, FEV1 and pulmonary function parameters measured during quiet breathing (work of breathing (WoB) and airway resistance (R_{aw})) were recorded over 12 h on three test days.

Immediate changes in FEV1 were modest, although each dose of formoterol caused a response of 12% pred within 10 min in one subject. Compared to placebo, both doses of formoterol induced a clinically and statistically relevant improvement in WoB (>25%) and R_{aw} (>20%), which occurred within 10 min and lasted over a period of 12 h ($p<0.02$, analysis of variance).

Thus, inhaled formoterol causes long-lasting lung functional improvements in apparently poorly reversible chronic obstructive pulmonary disease. Additional lung function measurements during quiet breathing after forced expiration tests may be useful in such patients to assess beneficial effects of bronchodilators.

or diseases likely to interfere with the conduct or results of the study, were excluded. No pregnant or breast-feeding females, or those with child-bearing potential were included. Patients were of both sexes and had a smoking history of >10 pack-yrs. All subjects gave written informed consent to be included in the study, which was approved by the local Medical Ethics Committee.

Study design

The study was of a randomized, double-blind, placebo-controlled, crossover design. Initially, baseline lung function was assessed and reversibility in FEV1 was measured 15 min after administration of a single dose of 1 mg terbutaline.

Thereafter, on three test days (separated by 1–7 days), a Latin square was used to randomize the patients to the three treatments: a single dose of formoterol, 6 or 24 μg metered dose, or placebo inhaled via a Turbuhaler. Correct inhalation technique was checked on each test day using a Turbuhaler Usage Trainer. All Turbuhalers were primed before use. Subjects were not allowed to use other bronchodilatory drugs continuously or for symptom relief during the study periods. Oral and systemic theophylline and β2-agonists were withheld throughout the study. Prior to the test days, short-acting β2-agonists and anticholinergics were withheld for at least 8 h, long-acting β2-agonists for 72 h and anti-histamines for 24 h. The use of a stable steroid dose during the study period was allowed. Smoking was not permitted from 2 h before and during the assessments.

On the test days, investigations started at 08:00 h. During a 12-h period, WoB, airway resistance (Raw) and spirometry values were measured at 10 min prior to administration and 10, 30, 60, 120, 180, 360, 540 and 720 min after inhalation of the study medication.

Study measurements

At the first visit, spirometry was performed in triplicate and the highest FEV1 value, at body temperature and ambient pressure, and saturated with water vapour (BTPS), was recorded both before and 15 min after inhaling terbutaline.

At least 30 min before inhalation of the test dose, a disposable oesophageal balloon (according to the guidelines of the European Community for Coal and Steel [14]) was inserted through the nose under local anaesthesia. The balloon was positioned at 40 cm from the nares and calibrated, after which the oesophageal pressure was recorded with a pressure transducer. The dynamic compliance was calculated from functional residual capacity (FRC), which was measured during inhalation and expiration, as the mean slope (of three curves) between FRC and FRC + 0.5 L. Oesophageal pressure and lung volume were measured in triplicate and plotted using an X-Y-recorder. Volume-corrected visous WoB was defined by the area enclosed by the volume–oesophageal pressure curve and expressed per unit of tidal volume.

Raw was assessed at FRC using a pressure-compensated integrated flow plethysmograph (SensorMedics 6200; SensorMedics Corporation, Yorba Linda, CA, USA). The rate of airflow measured at the mouth and plethysmograph pressures were simultaneously plotted by an X–Y-recorder during gentle panting. The Raw values were obtained at 0.5 L·s⁻¹ of inspiratory and expiratory flows at a respiratory rate of 0.5 Hz. Means of three measurements are reported. The specific airway conductance (sGWb) was calculated on the basis of these values.

Data evaluation

WoB and Raw were analysed as change from baseline (10 min prior to administration) values. Over the 12-h study period, the area under the time curve (AUC) was calculated by a trapezoidal method. FEV1 was assessed as percentage change of the predicted value, because the severity and change of this parameter is best expressed in relation to the reference values in moderate-to-severe COPD [12, 13, 15]. WoB and Raw were expressed as percentage change from baseline, because reliable reference values do not exist. On the basis of several studies a 10% increase in FEV1, 25% decrease in WoB, and 20% decrease in Raw was considered to be of clinical relevance [6, 16, 17]. No formal power calculation was performed before the study, but pilot experiments indicated that 12 patients would be needed for statistical significance. Absolute changes in parameters at 10 min and the AUC values were analysed by two-way analysis of variance (ANOVA). When significant overall treatment effects were found in ANOVA, the Student’s t-test for paired variables was performed for the three comparisons, correcting for multiplicity in the manner of Bonferroni; a significant difference was stated as p<0.017. The effects at 12 h were not formally assessed.

Results

The 12 patients enrolled all completed the study. The treatments and assessments were well tolerated, although in one patient codeine was given to prevent irritation and displacement of the oesophagus balloon. Half of the patients were current smokers. The group displayed clinical, radiological and physiological signs of emphysema (data not shown). There was clear-cut exertional dyspnoea and little sputum production. The anthropometric characteristics of all individual patients are shown in table 1. The mean baseline FEV1 value was 1.39 L, or 46.9% pred, and the reversibility in FEV1 after inhalation of terbutaline was 5.1% pred.

Baseline lung function data were comparable on the three test days. Inhalation of 6 or 24 μg of formoterol induced a rapid, though modest increase in FEV1. After 10 min, the mean increase was comparable to the response after reversibility testing with terbutaline inhalation (measured 15 min post dose). This increase in FEV1 was below the margin of reversibility (3.4 and 6.8% pred for 6 and 24 μg, respectively; table 2), although the highest dose of formoterol caused a statistically significant improvement compared to both the 6 μg dose and placebo (p=0.002).

On the individual basis, the presumed clinically relevant response (>10% pred in FEV1) was observed in one patient after a dose of 6 μg formoterol and in two patients...
after inhaling the highest test dose (table 3). Improvements reached a maximum of 7.4% (220 mL) and 10.0% (290 mL) after 2 h with a relevant response in two and four subjects for formoterol, 6 and 24 μg, respectively. In contrast, the change after placebo did not exceed 3.6% pred (fig. 1). Compared to placebo, the FEV1 remained (nonsignificantly) higher during the 12 h after formoterol. From the AUC values, a mean increase in FEV1 of 50 mL (nonsignificantly) higher during the 12 h after formoterol.

Following placebo administration, WoB steadily increased to 129.2% of the baseline value after 12 h (fig. 2). Formoterol, 6 μg and 24 μg, caused a highly significant reduction in mean WoB 10 min after administration: 29.6% and 27.6% of the initial value, respectively, compared with a 0.6% reduction after placebo (p = 0.0007, ANOVA, for the absolute changes, table 2). An improvement of at least 25% in WoB occurred in eight (6 M and 24 μg) patients at this time point. The maximum reduction was recorded after 60 min (35.1% and 28.0% of baseline values for 6 μg and 24 μg, respectively). Mean WoB remained below the morning values and below placebo values until the last measurement at 12 h. The AUC values for WoB after formoterol were significantly lower than after placebo (p = 0.03), but there were no significant differences between the two doses of formoterol.

In addition, both doses of formoterol caused a prompt and highly significant decrease in Raw. The reduction was 21.4±13.9% (6 μg) and 25.3±14.5% (24 μg) (table 2) 10 min after inhalation, compared with a 0.4±17.0% change after placebo (p = 0.003). By this stage, the presumed clinically important reduction (below the margin of 80% initial value) was recorded in eight (6 μg) and nine (24 μg) of the patients studied. Peak improvement in mean Raw was seen after 2 h and reached 25.5% (6 μg) and 30.2% (24 μg) compared with baseline (fig. 3). The differences in AUC values were statistically significant (p = 0.01). The FRC levels at which Raw was assessed were comparable on the different test days and did not change significantly during the test periods. For this reason, formoterol caused similar changes in Raw and sGaw within 10 min and for the AUC values.

Table 2. Changes in parameters 10 min after inhalation of the test medication, and the 12-h average by area under the time curves (AUC) of these parameters

<table>
<thead>
<tr>
<th>Effects after 10 min</th>
<th>Placebo</th>
<th>Formoterol 6 μg</th>
<th>Formoterol 24 μg</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1 L</td>
<td>0.025±0.099</td>
<td>0.100±0.126</td>
<td>0.208±0.138*</td>
<td>0.002</td>
</tr>
<tr>
<td>% pred</td>
<td>0.9±3.4</td>
<td>3.4±4.9</td>
<td>6.8±3.9</td>
<td>NA</td>
</tr>
<tr>
<td>WoB kPa-L⁻¹</td>
<td>-0.019±0.066</td>
<td>-0.207±0.131</td>
<td>-0.214±0.180</td>
<td>0.0007</td>
</tr>
<tr>
<td>% base line</td>
<td>-0.6±11.7</td>
<td>-29.5±13.3</td>
<td>-27.6±16.6</td>
<td>NA</td>
</tr>
<tr>
<td>Raw kPa-L⁻¹-s⁻¹</td>
<td>-0.009±0.106</td>
<td>-0.132±0.124</td>
<td>-0.14±0.105</td>
<td>0.003</td>
</tr>
<tr>
<td>% baseline</td>
<td>-0.4±17.0</td>
<td>-21.4±13.9</td>
<td>-23.5±14.5</td>
<td>NA</td>
</tr>
<tr>
<td>sGaw s⁻¹·kPa⁻¹</td>
<td>-0.01±0.08</td>
<td>0.14±0.11</td>
<td>0.18±0.12</td>
<td>0.0004</td>
</tr>
<tr>
<td>% baseline</td>
<td>0.1±19.4</td>
<td>33.3±21.2</td>
<td>47.3±33.1</td>
<td>NA</td>
</tr>
<tr>
<td>AUC values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1 L·h</td>
<td>0.6±2.51</td>
<td>1.5±1.02</td>
<td>2.6±2.08</td>
<td>NS</td>
</tr>
<tr>
<td>Raw kPa-L⁻¹·h⁻¹</td>
<td>1.21±1.70</td>
<td>-1.3±1.90</td>
<td>-1.34±2.21</td>
<td>0.93</td>
</tr>
<tr>
<td>sGaw s⁻¹·kPa⁻¹·h⁻¹</td>
<td>0.17±1.26</td>
<td>-1.1±1.53</td>
<td>-1.18±1.18</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data are presented as mean±sd. FEV1: forced expiratory volume in one second; WoB: work of breathing; Raw: airway resistance; sGaw: specific airway conductance; NA: not analysed; NS: not significant. AUC measured as change from baseline versus time (in h). *: p<0.002, significantly different from both placebo and 6 μg formoterol.
Discussion

About one-third of all patients with COPD show no positive "reversibility" in airflow obstruction by spirometry, with FEV1 measured before and after inhaling a bronchodilator. The observed response is dependent upon several variables, such as the way in which the change in FEV1 is expressed, the time of assessment after inhalation and the dose and type of bronchodilator used.

The 1995 consensus statement on COPD defined a positive response to medication to be $\geq 10\%$ of predicted FEV1 [12]. The 1993 working party additionally described "poorly reversible" COPD as having an increase in FEV1 of $<10\%$ pred after a single high-dose of terbutaline [13]. For the patients included in this study, poorly reversible COPD was defined as a maximal improvement in FEV1 of 9% pred.

Some patients with COPD and apparently irreversible airway obstruction after acute inhalation of a β_2-agonist will respond over a longer period of time ("period prevalence") [18]. Unfortunately, the ERS statements do not mention a standard time point to test reversibility. In clinical practice, a procedure with a one-time administration of short-acting β_2-sympatheticomimetic with response measurement after 15 min is generally accepted [19, 20].

Although all patients included in the study could be defined as poorly reversible, inhalation of formoterol caused an increase of $>12\%$ pred in FEV1 in one of 12 patients within 10 min. This shows that a small number of apparently poorly responsive patients do not have fixed forced airflows, and fast reversibility can occur when another bronchodilating agent is used. The differences in FEV1 changes between formoterol and terbutaline are probably due to the higher efficacy of formoterol, in combination with an earlier onset of action [21].

The 1993 guidelines stated that when FEV1 fails to show an unambiguous bronchodilator response, measurement of Raw may establish a clinical benefit. In contrast, the 1995 COPD statement reported resistance measurements to have no clinical advantage over spirometry. The present study demonstrates immediate, clinically relevant and statistically significant improvements in WoB and Raw in the selected patients with moderate-to-severe airways obstruction. These function tests have an important advantage when compared to forced expiratory reversibility testing in these patients, because it lacks the period prevalence seen in FEV1.

Table 3. – Individual changes in forced expiratory volume in one second (FEV1) during the reversibility test (measured 15 min after inhalation of terbutaline 1,000 μg) and at 10 min after inhalation of the test medication

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Terbutaline % pred</th>
<th>Placebo % pred</th>
<th>Formoterol 6 μg % pred</th>
<th>Formoterol 24 μg % pred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mL % pred</td>
<td>mL % pred</td>
<td>mL % pred</td>
<td>mL % pred</td>
</tr>
<tr>
<td>1</td>
<td>8.1</td>
<td>220</td>
<td>5.5</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>7.4</td>
<td>150</td>
<td>4.9</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>0.7</td>
<td>20</td>
<td>-5.2</td>
<td>-150</td>
</tr>
<tr>
<td>4</td>
<td>6.5</td>
<td>200</td>
<td>-3.2</td>
<td>-100</td>
</tr>
<tr>
<td>5</td>
<td>2.7</td>
<td>100</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>8.5</td>
<td>300</td>
<td>4.3</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>1.6</td>
<td>40</td>
<td>-2.0</td>
<td>-50</td>
</tr>
<tr>
<td>8</td>
<td>3.4</td>
<td>80</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>6.4</td>
<td>220</td>
<td>2.9</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>2.2</td>
<td>70</td>
<td>-1.6</td>
<td>-50</td>
</tr>
<tr>
<td>11</td>
<td>8.7</td>
<td>250</td>
<td>5.2</td>
<td>150</td>
</tr>
<tr>
<td>12</td>
<td>4.7</td>
<td>160</td>
<td>2.9</td>
<td>100</td>
</tr>
<tr>
<td>Mean</td>
<td>5.1</td>
<td>150</td>
<td>0.9</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Terbutaline % pred</th>
<th>Placebo % pred</th>
<th>Formoterol 6 μg % pred</th>
<th>Formoterol 24 μg % pred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mL % pred</td>
<td>mL % pred</td>
<td>mL % pred</td>
<td>mL % pred</td>
</tr>
<tr>
<td>1</td>
<td>-3.7</td>
<td>-100</td>
<td>11.0</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>14.8</td>
<td>300</td>
<td>4.9</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>-1.7</td>
<td>-50</td>
<td>3.5</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>4.9</td>
<td>150</td>
<td>6.5</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>4.0</td>
<td>150</td>
<td>4.0</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>1.4</td>
<td>50</td>
<td>15.6</td>
<td>550</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0</td>
<td>7.9</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>2.1</td>
<td>50</td>
<td>2.1</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>8.7</td>
<td>300</td>
<td>8.7</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>1.6</td>
<td>50</td>
<td>3.1</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>3.5</td>
<td>100</td>
<td>5.2</td>
<td>150</td>
</tr>
<tr>
<td>12</td>
<td>5.8</td>
<td>200</td>
<td>8.8</td>
<td>300</td>
</tr>
</tbody>
</table>

Mean: 3.4 μg to 100 6.8 210

Fig. 1. – Changes in forced expiratory volume in one second (FEV1) as % predicted after inhalation of 6 μg (-----) or 24 μg (-----) formoterol or placebo (-----).

Fig. 2. – Changes in work of breathing (WoB) as % change from baseline after inhalation of 6 μg (-----) or 24 μg (-----) formoterol or placebo (-----).

Table 3. – Individual changes in forced expiratory volume in one second (FEV1) during the reversibility test (measured 15 min after inhalation of terbutaline 1,000 μg) and at 10 min after inhalation of the test medication
Several factors can explain the documented changes in response in FEV1, despite a significant reduction in bronchodilators [24]. However, 52% of these patients showed a lack of response in FEV1, despite a significant reduction in R_{aw}. Several factors can explain the documented changes in R_{aw} and WoB, despite only limited improvement in FEV1. Compared to the manoeuvres of forced ventilatory flows, unforced parameters are less effort dependent, and are thus more reliable in subjects who are unable to consistently produce maximal efforts. In addition, dynamnic airways collapse or compression pattern due to loss of lung elastic recoil or severe obstruction may mask a beneficial response in R_{aw} to a bronchodilator during forced function testing [22]. Better lung emptying affects small airways calibre, which might reduce the degree of hyperinflation, reducing the inspiratory threshold load imposed by positive end-expiratory pressure, and hence diminish WoB and the perception of breathlessness [23]. The present study could not support this hypothesis in respect to hyperinflation; no significant changes in FRC levels occurred. However, the perception of breathlessness develops particularly during exercise, and while measurements during resting conditions may not detect differences in residual capacities, dynamic hyperinflation can be reduced during exercise after inhaling bronchodilators [24].

Subjective improvements in symptoms and quality of life occur after inhalation of bronchodilators [7]. Although it was not an objective of this study to measure breathlessness, immediate changes in perception of breathlessness were indicated by the patients during pilot-investigations. This is in agreement with the results of an open study by Del Torre et al. [6] who demonstrated that nonforced pulmonary function tests were far better correlated with subjective improvement than forced expiration tests.

Bronchodilating drugs are the keystone of pharmacological therapy in dyspnoeic patients with COPD [25]. Documenting reversibility in airway obstruction has important clinical implications, because it can help to predict the prognosis of the disease and is often used as an objective rationale to justify the prescription of bronchodilators [26]. In future, it may also be useful in predicting the response to antiinflammatory medication [27]. Therefore, sensitive methods for assessing response are required to prevent undertreatment of patients. To date, there has been no agreement on which a test or combinations of tests may best identify patients with a reversible component in their COPD. Because of its simplicity and reproducibility, FEV1 is considered the "gold standard" for assessing the presence of reversible obstruction in the diagnosis of asthma and COPD [28]. However, standardized reversibility tests have limitations in detecting a clinically relevant benefit in a subset of patients with COPD and loss of lung elasticity, and the absence of a response during a single test never justifies withholding bronchodilator therapy. Function tests during normal breathing in addition to forced conditions improve the prediction of reversibility [16]. On the basis of the preset margins (FEV1 improvement >10%, WoB reduction >25% and R_{aw} reduction >20%) a clinical improvement could be detected 10 min after inhaling 6 µg formoterol in only one patient for FEV1, while WoB and R_{aw} each showed clinical benefit in eight patients. The high-dose of formoterol (24 µg) had an effect on FEV1 in two patients when the presumed criteria were applied. Response numbers were nine and seven subjects for WoB and R_{aw} respectively after this dose. Although nonforced tests can detect a considerably larger response to inhalation of bronchodilator drugs, these tests also have a wider variability due to a high within-subject variation. The observed dispersion limits the value of reference values [14]. Because no reliable predicted values exist, it was necessary to express differences in percentage change from baseline. Although this influences the reproducibility, it seems to be the best method to detect changes in nonforced dynamic function tests [16]. For these reasons, margins of reversibility are widened to determine sensitivity to bronchodilators. Several studies concerning this problem confirmed the detection range of 20% and 25% for R_{aw} and WoB respectively, as used in the present study [6, 16, 17].

When the two methods of nonforced measurement studied are available for use in clinical practice, plethysmography is preferred. An obvious advantage of this technique over the volume–oesophageal pressure method is the possibility to measure lung volumes and FRC simultaneously. In this way, spirometry and resistance measurement can be incorporated and information about bronchodilator responses can be gathered without much additional effort and within a reasonable period of time. The plethysmographic tests can be performed even in patients with severe airways obstruction, although it is more difficult to carry out and makes use of more sophisticated equipment than spirometry. The oesophageal balloon method has few clinical indications and cannot be considered a routine test for reversibility due to ethical and technical reasons.

Both doses of formoterol inhaled via a Turbuhaler were well tolerated and caused similar maximal changes in WoB and R_{aw} almost instantaneously. With nonforced pulmonary function tests, formoterol was effective within 10 min of administration, and remained below placebo values until the end of the observation period, 12 h after inhalation. For FEV1, there was a dose-response relationship, although...
significant changes could only be shown for the highest
dose and the mean changes were below the preset margins
of reversibility and clinical relevance. The effectiveness of
formoterol administration via a Turbuhaler even after a low
dose of 6 μg is probably due to the efficient pulmonary
deposition of the dry powder inhalation device [29].

Because of the effectiveness and duration of action,
long-acting β2-agonists should be considered an alterna-
tive to short-acting bronchodilators in the management of
chronic obstructive pulmonary disease [25]. This study
provides further evidence that formoterol could have a
prominent place in chronic obstructive pulmonary dis-
ease, even when reversibility of the airways obstruction
seems to be limited or nonexistent.

Acknowledgements: The authors thank Astra
Draco for provision of the inhalers, C. Hendrik
and H. Post for their technical expertise, and J.A.
van Noord for his critical remarks.

References

1. Bartow RA, Brogden RN. Formoterol, an update of its
pharmacological properties and therapeutic efficacy in the
2. van der Molen T, Postma DS, Turner MO, et al. Effects of
the long-acting β-agonist formoterol on asthma control
in asthmatic patients using inhaled corticosteroids. Thorax
salmeterol and formoterol in patients with chronic ob-
structive pulmonary disease. Pulm Pharmacol 1994; 7:
103–107.
of salmeterol in the treatment of chronic obstructive
821.
5. Ulrik CS. Efficacy of inhaled salmeterol in the man-
agement of smokers with chronic obstructive pulmonary
disease: a single-center randomized, double-blind, pla-
754.
6. Del Torre L, Melica EV, Del Torre M. Effectiveness of
salmeterol in patients with emphysema. Curr Ther Res
7. Jones PW, Bosh TK. Quality of life changes in COPD
patients treated with salmeterol. Am J Respir Crit Care
8. Gimeno F, Postma DS, van Altena R. Plethysmographic
parameters in the assessment of reversibility of airways
obstruction in patients with clinical emphysema. Chest
1993; 104: 467–470.
9. Hogg JC, Macklem PT, Thuburn WM. Site and nature of
airway obstruction in chronic obstructive lung disease. N
10. Quanjer PH, Hilvering C, Tammeling GJ. The rela-
tionship between airway resistance, FEV1 and viscus
work of breathing in patients with chronic obstructive
lung disease before and after bronchodilatation. Bull
Physiopath Respir 1971; 7: 539–553.
11. Van Snippenburg R, Duurkens VAM, van den Bosch
JMM. Which test best measures bronchodilator drug re-
response in patients with loss of lung elasticity? Eur Respir J
1996; 9: Suppl. 23, 310S.
12. Siafakas NM, Vermeire P, Pride NB, et al. Optimal assess-
ment and management of chronic obstructive pulmonary
13. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF,
Petersen TS, Vemulat C-J. Lung volumes and forced ven-
tilatory flows. Official statement of the European Res-
14. Quanjer PH, ed. Standardized lung function testing.
Report Working Party "Standardization of lung function
tests". European Community for Coal and Steel, Lux-
S): 1–95.
15. Eliasson O, Degräff AC. The use of criteria for revers-
ibility and obstruction to define patient groups for bron-
16. van Noord JA, Smeets J, Clement J, van de Wöstjine KP,
Demeds M. Assessment of reversibility of airway obstruc-
17. Hellinckx J, van Noord JA, Gubbelsmans HLL, Demeds
M. Pitfalls in the interpretation of bronchodilator re-
reversibility to salbutamol does not always predict bron-
chodilatation after salmeterol in stable chronic obstructive
19. British Thoracic Society. BTS guidelines for the manage-
ment of chronic obstructive pulmonary disease. Guide-
lines Group of the Standards of Care Committee. Thorax
1997; 52: S1–S28.
20. Anonymous. Standaard diagnostiek van astma bronchiale
21. Wegener T, Hedenström H, Melander B. Rapid onset of
action of inhaled flornoterol in asthmatic patients. Chest
22. Marini JJ, Lakshminarayan S. The effect of atropine in-
halation in "irreversible" chronic bronchitis. Chest 1980;
77: 591–596.
sibility, exercise performance and breathlessness in stable
chronic obstructive pulmonary disease. Eur Respir J
24. Belman MJ, Botnick CB, Shin JW. Inhaled broncho-
dilators reduce dynamic hyperinflation during exercise in
patients with chronic obstructive pulmonary disease. Am J
25. Greening A. Pharmacotherapy in COPD. Eur Respir Rev
in chronic obstructive pulmonary disease. Am Rev Respir
reversibility in COPD is related to features of asthma. Am
J Respir Crit Care Med 1997; 155: 1529–1534.
28. Berger RB, Smith D. Acute postbronchodilator changes
in pulmonary function parameters in patients with chronic
29. Börgstrom L, Derom E, Stahl E, Wahlin-Boll E, Pauwels
R. The inhalation device influences lung deposition and
bronchodilating effect of terbutaline. Am J Respir Crit