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The pathogenesis of chronic inflammatory disorders,
such as asthma and chronic bronchitis, is obscure. There is
evidence, however, that neural pathways in the airways may
be involved in some of the inflammatory responses char-
acterizing these disorders [1]. It has long been recognized
that cholinergic parasympathetic nerves play a role in the
regulation of airway calibre and secretion of mucus in
health and disease [2]. More recently, peptide transmitters
released from the peripheral endings of a subset of slowly
conducting primary sensory neurons were found to cause
many of the inflammatory responses that characterize as-
thma [3]. These primary sensory neurons, mainly C-fibre
and Aδ-fibre polymodal nociceptors, the cell bodies of
which are present in the vagal nodose ganglia, supply the
conducting airways. The cell bodies of these neurons pro-
duce neuropeptides that are transported along the axons and
are released from both central and peripheral nerve end-
ings. These neuropeptides are the tachykinins, substance P
(SP) and neurokinin (NK)A, and the calcitonin gene-rel-
ated peptide (CGRP). Although CGRP is colocalized with
SP in some sensory nerves and exerts various effects in
different organs and tissues, its role in the airways appears
to be restricted to vasodilation of large bronchial arteries.  

In recent years, attention has been focused on the pos-
sible pathophysiological role of tachykinins in asthma, be-
cause SP and NKA cause many of the airway responses
observed in this disease as a manifestation of neurogenic
inflammation [1]. These responses include bronchocon-
striction, submucosal gland secretion, vasodilation, plasma
protein extravasation, adhesion of leukocytes to the vascu-
lar endothelium, potentiation of cholinergic neurotrans-
mission and cough.

Neurogenic inflammation

Neurogenic inflammation is regarded as a protective
mechanism called into operation whenever noxious condi-
tions or agents threaten homeostasis of the tissue. The ac-
tivation by sensory nerve fibres of a local inflammatory
protective response was proposed a century ago, on the
basis of the observation that in the skin of humans and
other mammals neurogenic vasodilation in response to
noxious stimuli is independent of central connections of
sensory nerve fibres [4, 5]. Subsequently, evidence has
accumulated showing that neurogenic inflammation is not
restricted to the skin but also occurs in visceral organs,
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ABSTRACT: Airway neurogenic inflammation is caused by tachykinins released
from peripheral nerve endings of sensory neurons within the airways, and is charac-
terized by plasma protein extravasation, airway smooth muscle contraction and
increased secretion of mucus. 

Tachykinins are degraded and inactivated by neutral endopeptidase (NEP), a
membrane-bound metallopeptidase, which is located mainly at the surface of airway
epithelial cells, but is also present in airway smooth muscle cells, submucosal gland
cells and fibroblasts. The key role of NEP in limiting and regulating the neurogenic
inflammation provoked by different stimuli has been demonstrated in a large series of
studies published in recent years. It has also been shown that a variety of factors,
which are relevant for airway diseases, including viral infections, allergen exposure,
inhalation of cigarette smoke and other respiratory irritants, is able to reduce NEP
activity, thus enhancing the effects of tachykinins within the airways. 

On the basis of these observations, the reduction of neutral endopeptidase activity
may be regarded as a factor that switches neurogenic airway responses from their
physiological and protective functions to a detrimental role that increases and perpet-
uates airway inflammation. However, further studies are needed to assess the role of
neutral endopeptidase down regulation in the pathogenesis of asthma and other
inflammatory airway diseases.
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including the respiratory tract, eyes, joints and dura mater
[6]. The release of sensory neuropeptides from peripheral
endings of primary sensory neurons has been referred to
as the "efferent" or "local effector" function, as opposed to
the afferent (sensory) function of these nerve fibres [7, 8]. 

The inflammatory response complex, including local va-
sodilation, plasma protein extravasation, leukocyte and
platelet adhesion, and mast cell degranulation, is brought
about by neuropeptides released from peripheral endings
of sensory neurons upon stimulation of their primary sen-
sory terminals [9]. Sensory neuropeptides, by virtue of
their vasodilator action and stimulation of proliferative ac-
tivity of fibroblasts and endothelial cells [10, 11], are con-
sidered to play major roles in the maintenance of tissue
trophism, as indicated by the occurrence of skin and cor-
neal lesions [12] and the increased incidence of gastric
ulceration [13] in animals in which primary sensory neu-
rons were permanently destroyed in the postnatal period.
In contrast to these beneficial and protective actions, ac-
tivation of primary sensory neurons may cause an ex-
aggerated inflammatory response, leading to neurogenic
inflammation. This neurogenic inflammation has been pro-
posed to play a role in various chronic diseases, including
arthritis, migraine and asthma [14–16]. 

The mechanisms by which neurogenic inflammatory res-
ponses may be exaggerated are multiple. Increased synth-
esis, release and transport of peptide transmitters have been
observed in models of arthritis [17]. An increased number
of receptors for tachykinins has been detected in bowel
tissue affected by chronic inflammatory disease [18]. In
addition to these mechanisms, it is possible that normal
levels of released peptides acting on normally functioning
receptors cannot be removed efficiently from the milieu,
leading to exaggerated responses. Termination of the ac-
tion of neuropeptides is usually accomplished by enzy-
matic degradation, whereas dilution and reuptake provide
negligible contributions. 

The activity of peptides in biological systems can be
dramatically changed by increasing or decreasing the rate
of hydrolysis of their amino acid bonds by peptidases. The
great importance of modulating the action of peptide neu-
rotransmitters and hormones by inhibition of their enzymat-
ic degradation is emphasized by the clinical and therapeutic
impact of the discovery of inhibitors of angiotensin-con-
verting enzyme (ACE). During the last two decades, a var-
iety of peptides has been recognized to play pivotal roles
in a number of physiological and pathophysiological proc-
esses. The identification of enzymes involved in peptide
degradation and the discovery of selective inhibitors for
these enzymes are of primary importance for disclosing
mechanisms of disease, and eventually for the design of
new therapeutic modalities. In this perspective, the role of
enzymes that are able to cleave and inactivate tachykinins
may be of primary importance in shifting neurogenic in-
flammatory responses from their physiological protective
functions to negative and detrimental pathophysiological
roles.

Neutral endopeptidase

Tachykinins may be degraded in vitro by a variety of
enzymes, including serine proteases [19], mast cell chy-
mase [20], calpains [21], neutral endopeptidase [22] and

ACE [23]. However, in vivo, responses to tachykinins
appear to be modulated mainly by neutral endopeptidase
(NEP) and in a few instances by ACE (which is able to
cleave SP, but not NKA [23]). Neutral endopeptidase (also
known as metalloendopeptidase, E.C.3.4.24.11), first dis-
covered in the brush border epithelium of the kidney [24],
is identical to a peptidase isolated from the rat brain and
called enkephalinase for its ability to cleave the small opi-
oid peptides Leu- and Met-enkephalin [25]. NEP is also
identical to the common acute lymphoblastic leukaemia an-
tigen (CALLA), also called antigen CD10 or gp100 [26]. 

NEP is a glycosylated zinc metallopeptidase protein,
consisting of 749 amino acid residues [27], a short cyto-
plasmic domain, a hydrophobic domain that anchors the
enzymatic molecule to the plasma membrane, and a large
extracellular domain containing the active site [28]. Neu-
tral endopeptidase preferentially cleaves peptides on the
amino acid site of hydrophobic residues (phenylalanine,
leucine, methionine), and hydrolyses the peptide bonds Gln-
Phe, Phe-Phe and Gly-Leu of SP, and Ser-Phe and Gly-Leu
of NKA [22]; thus, yielding inactive fragments lacking the
carboxyl terminal region, which is necessary for the bind-
ing to the tachykinin receptor. 

Like other peptidases, NEP is not selective for a given
peptide, but it cleaves a variety of substrates of different
lengths, including kinins, gastrin-releasing peptide, atrial
natriuretic peptide (ANP), enkephalins, endothelins, insu-
lin-B chain, interleukin-1α, and the chemotactic peptide
N-formyl-Met-Leu-Phe (fMLP). However, the selectivity
of NEP for its substrates is variable. For instance, it has
been shown that NEP is very active in cleaving internal
peptide bonds of SP, whereas despite its ability to cleave
CGRP at several locations, the enzyme to substrate inter-
action is weak [29]. In addition, despite the ability of NEP
to cleave and inactivate a variety of peptides in vitro, a cer-
tain specificity is observed in vivo, probably determined
by the expression and tissue distribution of NEP and by
the distribution of its potential substrates. 

Thus, because NEP, tachykinins and tachykinin recep-
tors are widely present in airway tissues of different ani-
mal species, many researchers have paid attention to the
importance of NEP in modulating airway responses to
tachykinins. In this article, we will review the evidence for
the role of NEP in regulating airway responses to tachyki-
nins, and we will discuss the putative role of airway sensory
nerves and neurogenic inflammation in the pathogenesis
of asthma.    

Effect of NEP inhibition on airway responses to tachy-
kinins and neurogenic inflammation

The initial observation that NEP inhibitors potentiate the
macromolecule secretion evoked by SP from submucosal
glands of the ferret trachea [30, 31] provided the hypothe-
sis that NEP may be important in the regulation of airway
responses to exogenously administered tachykinins. This
observation also raised the possibility that NEP metabo-
lism is of critical importance in modulating the activity of
endogenously released tachykinins, and hence of neuro-
genic inflammation [1]. These ideas were proven to be
true in a large series of in vitro and in vivo studies based
on the use of NEP inhibitors, thiorphan and phosphorami-
don, and of recombinant NEP (rNEP) in a series of exper-
imental models. The secretion of mucus from submucosal
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glands, evoked by exogenous tachykinins, is mediated by
NK1 receptors and is markedly potentiated by NEP inhibi-
tors. This effect has been observed in several mammalian
species, including human [32, 33]. 

Tachykinins potently contract airway smooth muscle.
This contractile response is mediated mainly by NK2 re-
ceptors and is regulated by NEP activity. Evidence for this
regulation is provided by the observation that NEP inhibi-
tion by phosphoramidon shifts the concentration-response
curve to NKA and SP to the left in guinea-pig [31], ferret
[34] and human airway smooth muscle [35]. Similarly, the
suppression of NEP activity potentiates the increase in total
pulmonary resistance caused by tachykinins in guinea-
pigs [36] and humans [37, 38]. In guinea-pigs, broncho-
constriction in response to inhaled SP is accompanied by
cough, an effect which is also increased by NEP inhibi-
tion and decreased by pretreatment with aerosolized rNEP
[39]. 

Exudation of a protein-rich plasma into the affected tis-
sues is a key feature of airway neurogenic inflammation
[40] and SP is exceedingly potent in causing increased
vascular permeability in rodent airways [41]. All of these
effects of SP are exaggerated by the suppression of NEP
activity [42], and are reduced or abolished by SP antago-
nists [43, 44]. Hence, it is quite reasonable to postulate
that NEP modulates the activity of SP on airway vascular
permeability and plasma exudation that occur in rodents
in response to airway irritants. Finally, it has been dem-
onstrated that NEP inhibitors potentiate other important
aspects of airway neurogenic inflammation, including SP-
induced increase in cholinergic neurotransmission [34], and
vasodilation evoked by tachykinins in the rat airway mi-
crocirculation [45]. 

Altogether, these findings provide powerful evidence that
tachykinins released from sensory nerves mediate multi-
ple effects in the airways, and that NEP activity may mod-
ulate effects of tachykinins in a variety of target cells. It
has also been reported that the inhibition of NEP caused
by aerosolized phosphoramidon is accompanied by a sig-
nificant increase in airway smooth muscle tone in asth-
matic subjects; thus, suggesting that tachykinins and NEP
may participate in the regulation of resting airway calibre
[46]. However, these observations conflict with previous
results obtained using a similar experimental approach [38].
A more recent study demonstrates that NEP inhibition by
inhaled thiorphan does not affect resting airway calibre in
asthma [47].

There is a large body of evidence that NEP also mo-
dulates the airway response to endogenously released ta-
chykinins. Electrical stimulation of the vagus nerves or
administration of capsaicin, the pungent agent contained
in the plants of the genus Capsicum, release tachykinins
from sensory nerve endings and evoke a complex res-
ponse in the airways, that includes vasodilation, plasma
protein extravasation, leukocyte adhesion, cough, non-
cholinergic bronchoconstriction, and secretion of mucus
[48–51]. The noncholinergic contraction of guinea-pig bron-
chi evoked by electrical field stimulation [52] and other
airway responses mediated by endogenously released ta-
chykinins [53, 54] are potentiated by the NEP inhibitors,
phosphoramidon and leucine-thiorphan. Interestingly, in
human isolated small bronchi, capsaicin causes a mild con-
tractile effect that is evident after NEP inhibition [55]. The
observation that the NEP inhibitor, thiorphan, potentiates

bronchoconstriction in response to inhaled sodium meta-
bisulphite in normal subjects [56] provides circumstantial
evidence that bronchoactive NEP substrates are released
in human airways in response to sodium metabisulphite,
and that NEP modulates the airway response to this indi-
rect bronchoconstrictor agent. 

A number of different stimuli has been shown to release
sensory neuropeptides from peripheral endings of sensory
neurons. These include alterations of the internal milieu,
such as changes in hydrogen ion concentration or osmo-
larity, recreational or industrial pollutants, such as ciga-
rette smoke or toluene diisocyanate (TDI) irritants such
as mustard oil, and pro-inflammatory mediators, including
bradykinin, histamine, peptidoleukotrienes, prostanoids,
platelet-activating factor (PAF), eosinophil cationic protein
(ECP), and lipoxins [7, 32, 57]. NEP inhibitors have been
repeatedly shown to increase the release of tachykinins
and to exaggerate the neurogenic inflammatory responses
evoked by these mediators.

Distribution of sensory nerves, tachykinin receptors 
and NEP in the airways

Critical factors that govern specificity in the enzymatic
degradation of endogenously released peptides are the tis-
sue distribution of the enzyme peptidase and that of its
substrate. The skeletal neuromuscular junction forms a
specialized unit, in which acetylcholinesterase clusters with
nicotinic receptors are in close proximity to the nerve ter-
minal. Sensory nerve endings and effector cells express-
ing tachykinin receptors do not appear to be arranged in a
similar manner. There is no evidence of a specialized unit
between the sensory nerve terminal and effector cells, and
the sensory peptide transmitter is presumed to diffuse
from the site of release to the site of action. Peptidases
specifically involved in the cleavage of sensory neuropep-
tides may be located at any site between these two points.
It is also possible that the peptidase is colocalized in the
same cells as the tachykinin receptors, and that both of these
entities compete for agonist-binding. This latter hypothe-
sis is supported by the observation that the response to
SP is smaller in cells expressing both NK1 receptors and
NEP than in cells expressing only the NK1 receptor or
NEP [58].

Sensory nerves containing tachykinins make a dense
network of fibres beneath the epithelium of rodent air-
ways [59]. Sensory nerves fibres are also present in the
vicinity of smooth muscle cells and submucosal gland
cells and around arterial vessels, whereas they are appar-
ently absent around venules [59]. In human tissues, SP-
containing sensory nerves are less abundant than in
rodents, but they exhibit a similar pattern of distribution
[60, 61]. Morphological [62] and functional evidence [32]
indicates the presence of NK1 or NK2 receptors for tachy-
kinins in submucosal glands, in endothelial and smooth
muscle cells.

The distribution of NEP has been examined by means
of specific antibodies, by measuring its activity, or by its
labelling with selective inhibitors. NEP is conspicuously
present in the kidney, lungs, discrete brain regions, repro-
ductive organs, bone marrow, intestine and lymph nodes
[28]. The broad substrate specificity and the almost ubiq-
uitous distribution of NEP suggest roles in the cleavage of
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different peptides involved in several functions. In the
lungs, NEP is abundantly expressed in epithelial cells [63].
Less, although functionally relevant, NEP has been found
in fibroblasts, smooth muscle cells and submucosal gland
cells [63]. The presence of NEP in the target cells for tachy-
kinin action, such as fibroblasts and smooth muscle cell
explains why even after the removal of the major source of
NEP (e.g. the epithelium) NEP inhibitors still potentiate
the nonadrenergic noncholinergic contraction evoked by
electrical stimulation or by capsaicin [52].

It is possible that tachykinins released from sensory nerve
terminals are cleaved by NEP, either during their diffusion
through the tissue or at effector cell sites. Because of the
high concentration of NEP in the epithelium, it is not sur-
prising that removal of epithelium leads to potentation of
the bronchoconstrictor responses evoked by exogenous
tachykinins [52]. Shedding of epithelial cells is commonly
found in bronchial biopsies of patients with severe asthma
[64]. Reduction of peptidase activity in epithelial cells by
various agents known to aggravate asthma has also been
reported [65–67]. These observations are of particular in-
terest, because they depict a possible scenario for the
involvement of exaggerated neurogenic inflammatory res-
ponses as a consequence of decreasing NEP activity in
asthma [68]. Moreover it has recently been shown that
NEP expression in the airway epithelium of bronchial
biopsies from atopic asthmatics is inversely related both to
asthma symptoms and to bronchial hyperresponsiveness
[69]. This observation provides further circumstantial evi-
dence that decreased NEP activity may be involved in the
occurrence of asthma symptoms and airway hyperrespon-
siveness.

NEP modulates neurogenic inflammation evoked by 
different stimuli

A number of stimuli causes neurogenic inflammation in
the airways. Some of them bear a particular relevance for
human diseases. The industrial pollutant, TDI, is the caus-
ative agent of a form of occupational asthma. The mecha-
nisms by which TDI causes asthma are not well understood,
but there is evidence that TDI contracts guinea-pig bronch-
ial smooth muscle by releasing tachykinins from sensory
nerve endings [70]. Similarly, cigarette smoke inhalation
produces a remarkable plasma protein extravasation in the
airway mucosa of rodents, which is completely abolished
by chemical denervation of sensory neurons with caps-
aicin or by blockade of NK1 tachykinin receptors [49].
Increased tonicity of the fluid covering the epithelium is
considered to be the stimulus that triggers exercise-induc-
ed asthma [71]. Hypertonic media release sensory neu-
ropeptides, and thus evoke inflammatory responses in the
airways [72]. The observation that NEP inhibitors poten-
tiate these effects indicates the ability of NEP to limit
inflammation caused by these agents.

Inhalation of allergens is a common cause of airway
narrowing and inflammation in asthmatic patients. The in-
volvement of neurogenic inflammation in the broncho-
motor and inflammatory responses to allergen has been
extensively evaluated in experimental animals, using dif-
ferent experimental approaches based on sensory dener-
vation with high doses of capsaicin, NEP inhibition, or
highly selective nonpeptide antagonists for NK1 [73] and
NK2 [74] tachykinin receptors. Allergen inhalation causes

protein plasma extravasation and increases total pulmon-
ary resistance in sensitized guinea-pigs. Both the vascular
and the bronchomotor responses to allergen are potenti-
ated by NEP inhibition and are reduced by tachykinin
receptor antagonists [75–78]. These observations suggest
that mediators released from airway inflammatory cells in
response to antigen activate sensory nerves to release neu-
ropeptides that contribute to airway narrowing and plasma
extravasation. When NEP activity is inhibited, tachykinins
are less rapidly inactivated and accumulate in the tissue,
thus contributing to the exaggerated responses. This inter-
pretation is further supported by the observation that oval-
bumin-induced plasma extravasation in the nasal mucosa
of sensitized guinea-pigs is decreased by the NK1 receptor
antagonist and is increased by the NEP inhibitor phospho-
ramidon [79]. 

In contrast to these data in rodents, recent data have
shown that inhalation of the NEP inhibitor, thiorphan, does
not affect either the early or the late asthmatic broncho-
constriction to allergen inhalation in asthmatic subjects,
suggesting that tachykinins may not be involved in these
allergic asthmatic responses in humans [47]. 

A key role for NEP in the control of inflammation in
different organs has recently been demonstrated  [80]. In
mice in which the gene coding NEP has been disrupted by
homologous recombination and gene-targeting (NEP knock-
out mice), baseline increased levels of plasma extrava-
sation were observed in skin, airway, gastrointestinal and
urinary tract tissue [80]. The increase in plasma extravasa-
tion was completely abolished by a tachykinin NK1 recep-
tor antagonist and by a bradykinin B2 receptor antagonist.
These observations support the hypothesis that NEP down-
regulation results in increased kinin levels, leading to in-
flammation in several tissues, including airways. 

Another mechanism by which NEP could achieve bron-
choprotection in asthma is suggested by the study of HARRI-
SON et al. [81]. These authors demonstrated that the NEP
inhibitor, phosphoramidon, enhanced human fibroblast pro-
liferation in a dose-dependent manner, thus suggesting
that the structural abnormalities enhanced by neuropep-
tides are modulated by NEP.

        Role of NEP in the metabolism of kinins

Because kininogens and kallikrein are present in the air-
ways and because these molecules [82], as well as kinins,
are increased in the bronchoalveolar lavage fluid from as-
thmatics challenged with allergen [83, 84], kinins have
been suspected to play important roles in asthma [85].
Bradykinin is an algesic agent that causes inflammatory
responses by acting directly on specific receptors in effec-
tor cells and indirectly by releasing a variety of agents
[86], including sensory neuropeptides [87]. When applied
locally to the airways, bradykinin causes plasma extrava-
sation and bronchoconstriction, mainly by activating
cholinergic reflexes and releasing tachykinins from sen-
sory nerves endings [88]. Although bradykinin is cleaved
by ACE and NEP [22, 23], increased total pulmonary
resistance and airway wall oedema caused by local appli-
cation of bradykinin are exaggerated following NEP inhi-
bition [89, 90]. The observation that bradykinin B2
receptor an-tagonists and tachykinin NK1 receptor antago-
nists are equally potent in reducing antigen-evoked
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plasma extravasation indicates that kinins that are released
by antigen activate sensory nerves [75].

Bradykinin also increases vascular permeability in hu-
man upper airways [91], and causes bronchoconstriction
in asthmatics, in part by activating cholinergic reflexes [92].
A mixed antagonist for NK1 and NK2 receptors has been
shown to reduce bronchoconstriction in response to inhal-
ed bradykinin in asthmatics, thus suggesting that part of
the bradykinin-evoked increase in total pulmonary res-
istance is due to local release of tachykinins [46–93]. These
observations indicate that kinins activate inflammatory
and bronchomotor responses in human airways, involving
the release of tachykinins and similar to those observed in
experimental animals. However, further studies are needed
to establish whether this pharmacological information has
pathophysiological relevance in the mechanism of human
allergic diseases.

Conditions that affect airway NEP activity

There is a growing evidence that NEP activity can be
affected by a variety of factors. Reduction in NEP activ-
ity leads to exaggeration of the inflammatory response
evoked by peptides released from peripheral endings of
sensory nerves. Therefore, NEP downregulation may be re-
garded as a factor that switches neurogenic inflammation
from its physiological trophic and protective function to a
detrimental role that increases or perpetuates the severity
of different disease states. 

Several studies have suggested that a number of pa-
thogens, including Sendai virus and influenza virus, and
respiratory irritants, including cigarette smoke, TDI, hy-
pochlorous acid and acrolein, can decrease airway NEP
activity. In rats with respiratory infections, it has been shown
that plasma extravasation induced by SP is markedly in-
creased and that the NEP inhibitor, thiorphan, signifi-
cantly potentiates SP-induced plasma extravasation in
pathogen-free rats but not in infected rats, suggesting a
reduction of NEP activity in the airways of the infected
animals [42, 66]. This evidence is further supported by the
observation of a significantly lower content of NEP in air-
ways obtained from infected rats [42]. 

Cigarette smoke causes airway inflammation and hyper-
responsiveness in humans. It has been shown that cigarette
smoke causes neurogenic inflammation through the
release of endogenous tachykinins [49]. By showing that
cigarette smoke solution inhibits NEP activity from guinea-
pig tracheal homogenates in a concentration-dependent
manner, DUSSER et al. [67] further extended the knowledge
of the mechanism by which cigarette smoke causes neuro-
genic inflammation. These findings have been confirmed
by the recent observation showing that airway plasma ex-
travasation induced by smoke inhalation in guinea-pigs is
blocked by an NK1 receptor antagonist, and it is potenti-
ated by the NEP inhibitor, phosphoramidon [94]. 

TDI and hypochlorous acid decrease NEP activity and
selectively potentiate tachykinin-evoked responses in guinea-
pig airways [65]. Recently, it has been shown that sulphur
mustard, an alkylating agent causing airway irritation and
asthma-like symptoms, decreases NEP activity in the tra-
cheal epithelium of the guinea-pig [95]. A similar inhibi-
tory effect on NEP activity is exerted by hydrogen peroxide
[96]. Because it is widely recognized that viral infections,

cigarette smoke and industrial or air pollutants cause as-
thma exacerbations, these observations further support the
hypothesis that NEP and neurogenic inflammation are in-
volved in the pathogenesis of asthma.

It has been hypothesized that corticosteroids are able to
increase the activity and the expression of NEP. This hy-
pothesis is supported by the observations that glucocor-
ticoids increase the expression of NEP in transformed
epithelial cells from human bronchi [97], and markedly
reduce neurogenic plasma extravasation in rat airways [98].
However, a recent study provides evidence against the
upregulating effect of glucocorticoids on NEP activity, be-
cause dexamethasone decreased plasma extravasation induced
by capsaicin without affecting NEP activity in the rat tra-
chea [99]. Consistent with the hypothesis that glucocorti-
costeroids upregulate NEP in the airways is the finding
that NEP expression is enhanced in airway epithelium from
atopic asthmatic patients who regularly use inhaled gluco-
corticosteroids [69].

Other pathophysiological roles of NEP in the lung

A variety of peptides are produced in the lungs or deliv-
ered to the lungs from the circulation or via the airways.
NEP contained in airway epithelial cells or in vascular
endothelial cells may have an important role in the metab-
olism of these peptides and may affect their function.

The N-formylated oligopeptides, produced by bacteria,
are potent chemotactic agents for neutrophils and contrib-
ute to the neutrophilic inflammatory response to bacteria.
Because fMLP is cleaved by NEP [28], it has been hy-
pothesized that NEP is involved in the regulation of the
inflammatory response to bacterial infections in the air-
ways. Evidence for this hypothesis is provided by the obser-
vation that inhibition of NEP present in the cell membrane
of neutrophils potentiates the chemoattractant activity of
fMLP [100]. 

Bombesin-like peptides, including the mammalian gas-
trin-releasing peptide (GRP), are potent mitogens for nor-
mal bronchial epithelial cells and neuroendocrine cells.
Small cell lung cancer, which is considered to be derived
from the transformation of neuroendocrine cells, also res-
ponds to these peptides. An autocrine loop exists in the
small cell carcinomas that secrete bombesin-like peptides,
express bombesin receptors and are stimulated to prolifer-
ate by these peptides [101]. Neutral endopeptidase efficiently
cleaves GRP. The growth of bombesin-like peptide-dep-
endent carcinomatous cells is blocked by NEP and is in-
creased by NEP inhibition [101]. Because cigarette smoke
inactivates bronchial epithelial cell surface NEP and small
cell carcinomas occur almost exclusively in cigarette smo-
kers, it has been hypothesized that the cigarette smoke-
dependent decrease in NEP activity may be causally related
to the proliferation of small cell carcinomas of the lung
[101, 102].

Endothelins are potent vasoconstrictor peptides produc-
ed by endothelial cells. Endothelin-1 may be also produced
by bronchial epithelial cells [103], and causes contraction
of airway smooth muscle of guinea-pigs [104] and hu-
mans [105]. NEP cleaves endothelins [106]. The observa-
tions that removal of the endothelium and NEP inhibition
increase the bronchomotor response to endothelin-1, where-
as recombinant human NEP reduces the response to endo-
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thelin, indicate that NEP plays a major role in the metabolism
of endothelin-1 [107]. These observations have recently
been confirmed and extended [108]. The finding of in-
creased expression of endothelin immunoreactivity in the
epithelial cells of asthmatics [109] indicates the possible
role of endothelins and their cleavage in diseases that lead
to airway narrowing.

Concluding remarks

In the treatment of asthma, there are some limited op-
tions. The relief from bronchoconstriction is commonly
achieved by β2-adrenergic agonists, which act directly on
airway smooth muscle, whereas airway inflammation, which
is a prominent feature of asthma, is controlled by "nonspe-
cific" anti-inflammatory drugs, such as corticosteroids. These
considerations emphasize the inadequacy of our current
understanding of the pathophysiology of asthma. Accord-
ingly, therapy is not usually targeted selectively to the
causal mechanism of the symptoms. It is probable that
many factors contribute to the development of disease,
either acting independently or arranged in a cascade of
events. The release of peptide transmitters from sensory
nerve endings by exogenous or endogenous stimuli, by
provoking neurogenic inflammation, may be part of this
cascade. 

NEP may play a central role in the mechanisms gov-
erning the integrity of the airways and the modulation of
airway neurogenic inflammation in asthma and other in-
flammatory disorders of the airways. Sensory nerve acti-
vation usually exerts a protective action for the integrity of
the tissue against injury. Cigarette smoke, hypertonicity of
the tracheobronchial fluid, air pollutants, antigen and en-
dogenous mediators released by these stimuli may activate
this protective function. However, when NEP is downreg-
ulated or when the airway epithelium (which contains mea-
surable amounts of NEP) is damaged, the unopposed action
of sensory neuropeptides may lead to exaggerated inflam-
mation. 

The discovery of selective and potent antagonists of
tachykinin receptors, suitable for use in human studies,
will provide the opportunity to test the validity of this hy-
pothesis in a clinical setting. Strategies directed to in-
crease the action of neutral endopeptidase, including the
administration of recombinant neutral endopeptidase, may
have relevance for the treatment of airway disorders.
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