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ABSTRACT: Several recent observations suggest that tachykinins, such as sub-
stance P and neurokinin A, might be involved in the pathogenesis of bronchopul-
monary alterations. Progress in investigations on the physiological and pathological
roles of tachykinins has been greatly facilitated by the availability of a number of
highly selective nonpeptide antagonists for tachykinin neurokinin 1, 2 and 3 (NK|,
NK, and NK3) receptors.

The use of selective tachykinin NK, receptor antagonists suggests that tachykinin
NK, receptor stimulation plays an important role in the development of airway
hyperresponsiveness in the guinea-pig. Others studies have also indicated that
tachykinin NK-receptors are involved in immediate or delayed neurogenic inflam-
mation including microvascular leakage and the subsequent increase in plasma
protein extravasation. A role for the sensory neuropeptide system has also been
proposed in cough, as shown by the observation that the antitussive effect of
tachykinin NK, receptor antagonists has clearly been demonstrated in several
experimental conditions, but the effect of tachykinin NK; receptor antagonists is
still debated.

Taken together, the results obtained with the various selective receptor antago-
nists provide pharmacological evidence that tachykinins play a role in delayed
bronchopulmonary alterations and suggest that tachykinin receptor antagonists
may be useful for investigating mechanisms and possibly reducing airway func-
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The excitatory nonadrenergic noncholinergic (NANC)
system, involving various neuropeptides of the tachykinin
family, such as substance P (SP), neurokinin A (NKA),
neurokinin B (NKB) and calcitonin gene-related pep-
tide (CGRP), as transmitters, has now been well char-
acterized. In airways, SP, NKA and CGRP are co-localized
in the sensory unmyelinated C-fibres, which innervate
all compartments of the airway wall from the trachea
down to the bronchioles. C-fibre endings are found with-
in the epithelium. They form a dense plexus in the sub-
epithelial lamina propria, supply the glands, ramify within
the smooth muscle layer and make direct contacts with
postganglionic parasympathetic neurons, located in the
local ganglion. In the trachea, this sensory innervation
is almost exclusively derived from sensory vagal neu-
rons, supplied by the jugular ganglion, whilst that of the
lung is of mixed origin with a predominating vagal and
a smaller spinal contribution [1-5]. The NANC system
can be activated by different stimuli, which affect the
chemosensitive C-fibre afferents in airways and lead to
a local release of tachykinins that are responsible for
several biological effects in the bronchopulmonary syst-
em: bronchospasm; increase in vascular permeability from
postcapillary venules; stimulation of glandular secre-
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tion; facilitation of cholinergic neurotransmission; and
recruitment and activation of some types of inflamma-
tory cells. Sensory nerves also mediate respiratory def-
ence reflexes, such as coughing, sneezing and secretion
of mucus (fig. 1).

From these data, it has been hypothesized that abnor-
mal stimulation of the sensory nerve terminals, e.g.
induced by epithelial shedding as seen in asthma, results
in enhanced release of tachykinins in the airway wall
with subsequent exaggeration of inflammation. This con-
cept of "neurogenic inflammation" introduces sensory
nerve fibres as important components in the pathogen-
esis of asthma.

The biological actions of tachykinins are mediated via
three types of receptors, denoted neurokinins 1-3 (NK,
NK, and NK3), which have the highest affinity for SP,
NKA and NKB, respectively. This receptor classifica-
tion has been established from receptor-binding and
functional studies. It has now been recognized that the
expression of tachykinin NK; receptors is confined main-
ly to the central and peripheral nervous system, whilst
tachykinin NK, and tachykinin NK, receptors are express-
ed both in the central and peripheral nervous system
and in target organs, including airways [5—-10]. According
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Fig. 1. — Schematic representation of the nonadrenergic noncholinergic (NANC) nerves of airways. SAR: slowly adapting pulmonary stretch
receptor; RAR: rapidly adapting pulmonary stretch receptor; MVL: microvascular leakage; V/d:vasodilatation; B/C: bronchoconstriction; E:
eosinophils; M: monocytes/macrophages; L: lymphocytes; MC: mast cells; N: neutrophils. (Adapted from [1-5]).

to the present state of our knowledge, SP and NKA
seem to play an important role in the respiratory sys-
tem. Therefore, the presence of tachykinin NK, and
tachykinin NK, receptors on different target cells ulti-
mately determines the biological consequences of the
activation of the NANC system, although an activation
of tachykinin NK; receptors is not completely exclud-
ed [11, 12].

Progress in investigations on the physiological and
pathological roles of tachykinins and on tachykinin re-
ceptor classification has been greatly facilitated by the
availability of a number of highly selective nonpeptide
antagonists for tachykinin NK,, NK, and NK; receptors
(table 1 and fig. 2) [28]. These compounds can be regar-
ded as suitable tools for the investigation of the pharma-
cological effect of tachykinins. Moreover, tachykinin
NK, and NK, dual receptor antagonists, FK 224, S.16474
and MDL 105,212A, have been described [25-27]. With
the development of newer and more selective ligands
for the various receptors, it has become possible to clar-
ify the respective contribution of tachykinin NK;, NK,
and NK; activation to the pharmacological effects of
tachykinins (table 2).

Airway hyperresponsiveness, an enhanced broncho-
constrictor response to many different stimuli, is a key
feature of asthma and relates closely to the severity of
the disease, the frequency of symptoms, and the need for
treatment [31-33]. There is some evidence that hyper-
responsiveness is associated with inflammation in the

airways. Histopathological studies carried out on asthma-
tics who died during asthma attacks have demonstrated
marked inflammation in the airways, with infiltration of
inflammatory cells, particularly eosinophils, alteration of
the airway epithelium, and plugging of the airway lum-
en by viscous secretions [34].

It is increasingly apparent that different cells are in-
volved in the pathogenesis of asthma, and that these cells
produce a variety of mediators that interact in a com-
plex way to produce a number of pathological effects,

Table 1. — Tachykinin receptor antagonists

Type Code First author [Ref.]

NK, selective CP 96,345 SNIDER [13]
RP 67,580 GARRET [14]
FK 888 Fumn [15]
SR 140333 EmMonps-ALT [16]
(nolpitantium)
LY 303870 GITTER [17]
GR 203040 BEATTIE [18]

NK, selective MEN 10,376 Magat [19]
SR 48968 Emonps-ALt [20]
(saredutant) ADVENIER [21]
MEN 10,627 MaGcar [22]
GR 159897 BaLL [23]

NKj selective SR 142801 (osanetant) EMONDS-ALT [24]

Dual NK, + NK, FK 224 MURAI [25]
S.16474 RoBINGAU [26]
MDL 105,212A KupLacz [27]

NK: neurokinin.
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Fig. 2. — Chemical structures of nonpeptide tachykinin receptor antagonists. a) CP 96,345: [2S,3S)-cis-2(diphenylmethyl)-N-[2-methoxyphenyl)-
methyl]-1-azabicyclo[2.2.2]octane-3-amine; b) RP 67580: (3aR,7aR)-7,7-diphenyl-2-[ 1-imino-2(2-methoxyphenyl)-ethyl]perhydroisonindol-4-one;
¢) CP 99,994: (+)-(2S,3S)-3-(2-methoxy-benzylamino)-2-phenylpiperadine; d) SR 140333: (S)-1-[2-[3-(3,4-Dichlorophenyl)- 1-(3-isopropoxyphenylacetyl)
piperidino-3-yljethyl]-4-phenyl-1-azoniabicyclo [2.2.2]octane; e) SR 48968: (S)-N-methyl-N[4-acetylamino-4-phenylpiperidino)-2-(3,4-dichloro-
phenyl)butyl]-benzamide; f) GR 159897: (R)-1-[2-(5-fluoro-1H-indol-3-yl)ethyl]-4-methoxy-4-[(phenylsulfinyl)methyl]-piperidine; g) SR 142801;
(R)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidino-3-yl)propyl)-4-phenylpiperidino-4-yl)-N-methylacetamide. NK;, NK,, NK;: neurokinins
1, 2 and 3, respectively.

which, together, contribute to bronchial hyperresponsive-
ness. Among these mediators, tachykinins appear to play
a major role, since they contribute to the development
of "neurogenic inflammation" [3, 35]. Moreover, seve-
ral mediators involved in the development or mainte-
nance of the inflammatory response, could also enhance
the production or the activity of tachykinins [36—39].

A role for the sensory neuropeptide system has also
been proposed in cough. According to the recent review
by WipbpicomsE [40], the cough reflex is usually con-
sidered to be mediated by intraepithelial nerves and by
two types of sensory receptors, the pulmonary and
bronchial C-fibre receptors with nonmyelinated afferents,
and the rapidly adapting pulmonary stretch receptors

Table 2. — Receptors involved in the pharmacological effects of tachykinins (substance P, neurokinin A and neu-
rokinin B) in the airways

Effects Receptor subtypes
NK, NK, NK;
Nerve activation Increase in ganglionic transmission + + +++
Bronchial smooth muscle Contraction of ferret trachea + +++
Contraction of hamster trachea +++ (NK,p)
Contraction of guinea-pig trachea ++ +4++
Contraction of guinea-pig bronchus + +++ (NK,,)
Contraction of human bronchus + +++
Relaxation of rat trachea* ++
Vascular permeability Plasma protein extravasation +++ +/++
Recruitment and activation Chemotaxis (guinea-pig, human) 4+
of inflammatory cells Lymphocyte proliferation (human) +++ +
Increase in neutrophil motility +++ +
Monocyte/macrophage stimulation ++ ++
Mast cell activation® ? ?
Stimulation of secretion Mucus in guinea-pig trachea +++ +
Mucus in ferret trachea +++ +
Mucus in human bronchus 4+ +
CI- from epithelial cells +++ +
Bronchial hyperresponsiveness Increase of ACh-induced bronchoconstriction
(guinea-pig) +++ +++
(mouse) ++
Increase of histamine-induced
microvascular leakage (guinea-pig) +++ +++
Cough + +++ ?

*: contractile effect has also been reported [29], #: a nonreceptor effect has been suggested [30]. NK: neurokinin; ACh: acetyl-
choline. Receptor subtypes involvement: +++: very strong; ++: strong; +: moderate; +: doubtful; ?: questionable.
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(RARs), sometimes called irritant receptors, with small
diameter (A d) myelinated fibres. The evidence that RARs
cause cough is clearly established, and is based on their
localization at the sites of the airways most sensitive to
cough (larynx and carina) [41—43], and on the fact that
all the mechanical and chemical stimuli that lead to
cough also excite them [40, 44]. In contrast, the role of
pulmonary and bronchial C-fibre endings and tachykin-
ins in cough is not yet clearly established, but some evi-
dence suggests that the stimulation of such receptors
elicits an increased sensitivity of the afferent nervous
pathways associated with the stimulation of RARs [40].

The aim of the present review is to describe the involve-
ment of tachykinins in airway inflammation, bronchial
hyperresponsiveness and cough, and to describe a poten-
tial therapeutic use of new antagonists.

Tachykinins, airway inflammation and bronchial
hyperresponsiveness

Airway hyperresponsiveness

Airway hyperresponsiveness is an important feature
of asthma and is characterized by a nonspecific exag-
gerated response to bronchoconstrictor agents, such as
histamine and acetylcholine [31-33]. Experimentally,
bronchial hyperresponsiveness is expressed by the left-
ward shift of the concentration-response curves follow-
ing aerosol administration of histamine or methacholine.
In asthmatic patients, bronchial hyperresponsiveness
results in a significant decrease in the provocative con-
centration of histamine or methacholine causing a 20%
decrease in forced expiratory volume in one second
(PC20).

Bronchial hyperresponsiveness is the expression of an
exaggerated bronchopulmonary response associated with
airway inflammation, involving vascular alterations, in-
crease in bronchial secretions, recruitment and activa-
tion of inflammatory cells.

Involvement of tachykinins in airway hyperresponsive-
ness

Several observations suggest that tachykinins, such as
SP and NKA, might be involved in the pathogenesis of
airway hyperresponsiveness. Indeed, recent studies have
reported that exposure of guinea-pigs to a single aerosol
of either capsaicin (the pungent extract of red pepper,
which releases endogenous sensory neuropeptides) [45]
or SP elicited airway hyperresponsiveness to exogenous
bronchoconstrictor agents [46—50]. NKA also enhanced
methacholine response for up to 4 weeks in monkeys
[51]. In asthmatic patients, exposure to SP enhanced
maximal airway narrowing to methacholine 24 h later
[52].

Conversely, chronic treatment with high doses (i.p.)
of capsaicin, which depletes tachykinins from NANC
nerves, eliminated airway hyperresponsiveness induced
by acute capsaicin [48], citric acid [53], ovalbumin [54,
55] toluene diisocyanate [56], endotoxin [57], platelet-
activating factor (PAF) [58], respiratory viral infection
[59], and ozone [60] in guinea-pigs, dinitro-fluoroben-
zene [61] and toluene diisocyanate [62] in mice, and
Altenaria tenuis aerosol in rabbits [63].

Tachykinin receptor antagonists and bronchial hyper-
responsiveness

The involvement of tachykinins in the development
of airway hyperresponsiveness has also been demon-
strated using tachykinin receptor antagonists. Indeed, a
single treatment with the tachykinin NK, receptor ant-
agonist, SR 48968 (Saredutant) [64], or with the dual
tachykinin NK; and NK, receptor antagonists, MDL
105,212 [65] or FK 224 [66], prevented the antigen-
induced airway hyperresponsiveness in the guinea-pig,
whereas the tachykinin NK; receptor antagonists, SR
140333 [64] (fig. 3) or FK 888 [66], did not. Inhaled
SP in phosphoramidon-pretreated guinea-pig also induced
bronchial hyperresponsiveness [49]. In this model again,
SR 48968, but not SR 140333, suppressed the leftward
shift of the dose-response curve to acetylcholine observ-
ed after exposure of phosphoramidon-pretreated guinea-
pigs to SP [67], and these data also support a role for
tachykinin NK, receptor stimulation in the development
of airway hyperresponsiveness. Similar conclusions were
reported by YOSHIHARA et al. [68], who showed that SR
48968 prevented the potentiation of antigen-induced
bronchoconstriction by cold air in guinea-pigs; and by
PERRETTI et al. [69], who reported that the specific and
long-acting peptidic antagonist, MEN 10,627, inhibited
PAF-induced airway hyperresponsiveness in the guinea-
pig. Finally, Tocker et al. [70] reported that vagal stim-
ulation in the presence of atropine potentiated pulmonary
anaphylaxis in sensitized perfused guinea-pig lung; this
potentiation was abolished by SR 48968, whereas NKA,
but not SP, was able to mimic the effects of vagal stim-
ulation.
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Fig. 3. — Effect of: a) SR 48968; and b) SR 140333 on antigen-
induced airway hyperresponsiveness. Hartley guinea-pigs were sen-
sitized by ovalbumin (OA) aerosol. After 15-20 days they were
challenged by exposure to successive solutions of 10, 100, 1000, 5000
and 10000 OA pg-mL-! for 15 min each. The bronchopulmonary
response of anaesthetized and ventilated guinea-pigs was assessed 48
h after exposure to either OA challenge or saline. After 10 min, suc-
cessive administrations of 50, 100, 200 and 500 pg-mL-! acetylcholine
(ACh) aerosol were given for 1 min each at 10 min intervals. The
bronchopulmonary response was expressed as meantSEM percentage
of that obtained by clamping the tracheal cannula. Sensitized guinea-
pigs were treated, 30 min before OA exposure with 1 mg-kg! i.p. of
SR 48968 or of SR 140333. —u—: saline (n=5); —&—: ovalbumin
(n=8); m : SR 48968 + OA (n=6);—0o—: SR 140333 + OA (n=6).
Significance of differences: saline vs OA, p<0.001; OA vs SR 48968
+ OA, p<0.01; SR 48968 + OA vs saline, Ns; OA vs SR 140333 +
OA, ns; SR 140333 + OA vs saline. (Reproduced, with permission,
from [64]).
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In contrast, in another study, interleukin-8 (IL-8)-
induced bronchial hyperresponsiveness in the guinea-
pig could not be reduced either by FK224 or FK888 [71].
In these conditions, the bronchial hyperresponsiveness in-
duced by intranasal administration of IL-8 was closely
associated with recruitment of neutrophils, but not eosi-
nophils, and involved thromboxane A, (TxA,) as a main
mediator [72]. Differences in the mechanisms of the de-
velopment of bronchial hyperresponsiveness in the var-
ious experimental models of bronchopulmonary alterations
in the guinea-pig could also explain the discrepancies
between the effectiveness of tachykinin receptor antag-
onists. However, the results obtained with selective
tachykinin NK, receptor antagonists, such as SR 48968
and MEN 10,627, strongly suggest that tachykinins are
involved in the development of airway hyperrespons-
iveness, and that tachykinin NK, receptor stimulation
plays an important role in this phenomenon, in the guinea-
pig. It was reported that tachykinins are essential for
the development of tracheal hyperreactivity induced by
toluene diisocyanate in mouse airways [62]. In contrast
to the prevention of airway hyperresponsiveness by the
tachykinin NK, receptor antagonist in guinea-pig, the hy-
perresponsiveness observed in the mouse was completely
blocked by the tachykinin NK, receptor antagonist, RP
67,580 [62].

Since the actions of tachykinins are terminated by
proteolytic cleavage due mainly to neutral endopeptidase
(NEP) E.C. 3.4.24.11, it has been proposed that this
enzyme plays a regulatory role in the development of
bronchial hyperresponsiveness and airway inflamma-
tion. Blockade of NEP by phosphoramidon potentiates
airway responses to exogenous and endogenous neuro-
peptides [73, 74]. Moreover, bronchial hyperrespon-
siveness to SP has been reported after viral infection or
cigarette smoke exposure [75-78], which altered NEP
activity. Furthermore, only guinea-pigs pretreated with
the NEP inhibitor, phosphoramidon, elicited a signifi-
cant increase in airway response to SP after antigen
challenge [79], and to acetylcholine (ACh) after SP or
citric acid exposure [49, 53].

Tachykinins and microvascular leakage

Among the biological effects elicited by tachykinins,
which might be involved in the alteration of pulmonary
responses, microvascular leakage and the subsequent
increase in plasma protein extravasation, a component
of "neurogenic inflammation" might play an important
role. Pharmacological control of vascular leakage may
be of interest in asthma, because airway oedema con-
tributes not only to airway narrowing but also to air-
way hyperresponsiveness [80]. Several studies have
indicated that tachykinin NK receptors are involved in
neurogenic inflammation in the central airways of guinea-
pig and rat [81-83].

SP alone has been shown to induce microvascular
leakage when administered intravenously [84, 85], or by
aerosol [86], in various animal species, including guinea-
pigs and rats. Hence, the activity of SP on microvascul-
ar leakage is potentiated by pretreatment of the guinea-pig
with a NEP inhibitor [87]. It has been demonstrated that
SP-induced plasma protein extravasation is mediated
mainly through tachykinin NK, receptor stimulation.

Indeed, in guinea-pig airways, the tachykinin NK, recep-
tor antagonist, CP 96,345, has been reported to reduce
microvascular leakage induced by exogenous SP, cap-
saicin, electrical field stimulation (EFS) or bradykinin
[81, 88]. Inhalation of antigen by guinea-pigs leads to
plasma extravasation of the trachea and nasal mucosa
[83]. Interestingly, after an early phase of extravasation,
release of neuropeptides from sensory nerves occurs,
with subsequent increase in extravasation via activation
of tachykinin NK, receptors, as demonstrated by the
inhibitory activity of CP 96,345 [83]. NK, receptor stim-
ulation has also been reported to be involved in the
delayed-type hypersensitivity-induced increase in vas-
cular permeability in the mouse small intestine [89], in
the SP-induced inflammatory responses in guinea-pig
skin [90] and in capsaicin-induced mouse ear oedema
[91].

A role for tachykinin NK, receptors in microvascu-
lar leakage cannot be excluded, since SR 48968 inhib-
ited NKA-induced microvascular leakage in guinea-pigs
[88]; however, NKA is considerably less potent and effi-
cient than SP for inducing this effect. TOUSIGNANT et al.
[92] recently reported that [B-Ala3]NKA(4—10) may in-
duce plasma protein extravasation in guinea-pig second-
ary bronchi and intraparenchymal airways, via tachykinin
NK, receptor stimulation.

We recently showed that aerosolized SP, in addition
to its direct effects, potentiates histamine-induced micro-
vascular leakage in phosphoramidon-pretreated guinea-
pigs 24 h later [67]. In these conditions, SR 140333 has
been shown to markedly reduce the SP-induced poten-
tiation of microvascular leakage induced by histamine,
whereas SR 48968 had no preventative effects [67];
strengthening the role of the tachykinin NK; receptor
in the microvascular leakage following tachykinin stim-
ulation. Similar results were obtained in animals exposed
to aerosolized citric acid and challenged 24 h later with
histamine [93].

Tachykinins and inflammatory cells

Several effects of SP on inflammatory cells have been
described [94]. For example, SP elicited granulocyte
adhesion and infiltration in skin [90, 95]. However, the
infiltration of inflammatory cells appears to be mediat-
ed via the release of secondary mediators, possibly mast
cell-derived mediators with 5-lipoxygenase products [90,
96].

Tachykinins have not been demonstrated to directly
induce eosinophil chemotaxis in vivo [49] and in vitro
[97], which suggests that SP-induced bronchial hyper-
responsiveness is not closely related to eosinophil infil-
tration in airways [49]. Moreover, capsaicin or SR 48968
pretreatment prevented antigen challenge-induced air-
way hyperresponsiveness in sensitized guinea-pigs, but
not the recruitment of eosinophils in airways [54, 55,
98]. Such data have recently been confirmed by Van
OosTERHOUT et al. [50] studying the involvement of inter-
leukin-5 (IL-5) and SP in the development of airway
hyperreactivity to histamine in guinea-pigs. Indeed, in
vivo administration of either IL-5 or SP induced the
development of airway hyperreactivity, whereas admin-
istration of IL-5, but not SP, induced a significant increase
in the number of eosinophils and eosinophil peroxidase
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activity in bronchoalveolar lavage (BAL) cells. Moreover,
the simultaneous administration of IL-5 and SP did not
potentiate the hyperreactivity and eosinophilia observ-
ed with IL-5 alone. These data suggest that IL-5 is im-
portant in the recruitment of eosinophils, whereas both
IL-5 and SP are involved in the induction of airway
hyperreactivity [50].

In rabbits immunized to Alternaria tenuis, chronic
treatment with capsaicin induced a reduction of bronchial
hyperresponsiveness, without inhibitory effect on the
pulmonary recruitment of eosinophils and neutrophils
[63]. In contrast, in primates, dual antagonism by tachy-
kinin NK, receptor antagonist (CP 99,994) plus tachykin-
in NK, receptor antagonist (SR 48968) markedly reduced
the eosinophil recruitment in BAL fluids induced by
antigen challenge, whereas each antagonist used alone
was ineffective [99]. More recently, KALTREIDER et al.
[100] reported that the tachykinin NK; receptor antag-
onist, CP 96,345, moderately, but significantly, reduced
the total numbers of leucocytes, lymphocytes and gran-
ulocytes retrieved by BAL after antigen challenge of
sensitized mice. This result suggests that tachykinins
may be secreted locally during pulmonary immune res-
ponses, and are recognized by leucocytes infiltrating
lung tissue [100].

Although few data are available on the activation of
eosinophils by SP, KROEGEL et al. [101] demonstrated
that SP can induce eosinophil peroxidase release from
guinea-pig eosinophils. When eosinophils from allergic
donors were pretreated with SP, the chemotactic responses
to PAF or leukotriene B, (LTB,) were enhanced [97].
Although SP is known to stimulate the chemotaxis of
human monocytes [102] and rabbit neutrophils [103], a
moderate chemotactic activity of SP on neutrophils both
from healthy subjects and asthmatic patients has been
observed [104]. Interestingly, SP- or interleukin 1 (IL-
1)-induced polymorphonuclear leucocyte accumulation
was prevented by a tachykinin NK, but not a NK, recep-
tor antagonist [105]. Furthermore, the release of endoge-
nous tachykinins, possibly SP, may occur following IL-1
injection in vivo [105].

Tachykinins have other effects in vitro, including stim-
ulation of human T- and B- lymphocytes and fibroblast
proliferation [106—109]. Tachykinins may also modu-
late inflammatory cell activation through the release of
various cytokines. Lotz et al. [110] reported that SP
induced the release of IL-1, interleukin-6 (IL-6) and
tumour necrosis factor-a (TNF-a) from human mono-
cytes. SP has also been demonstrated to release IL-8
from human polymorphonuclear leucocytes and to en-
hance the IL-8 release induced by other stimuli, such
as N-formyl-methionyl-leucyl-phenylalanine (fMLP)
[111]. Finally, in association with human T-lymphocyte
proliferation, an increase in IL-2 messenger ribonucleic
acid (mRNA) expression by SP has been reported by
CaLvo et al. [112].

The role of tachykinin NK, receptors in tachykinin-
induced leucocyte activation in airways has recently
been strengthened by the observation that the adhesion
of leucocytes, induced in the venules of rat trachea by
SP or capsaicin, can be reduced by a selective tachykinin
NK, receptor antagonist, CP 96,345, and thus appears
to be mediated by tachykinin NK, receptors [113]. How-
ever, the role of tachykinin NK receptor stimulation in

the neutrophil chemotaxis is not completely established,
since the tachykinin NK, receptor antagonist, SR 48968,
has been found to inhibit tachykinin-induced chemo-
taxis of human neutrophils [114].

Bronchial hyperresponsiveness induced by aerosolized
SP in phosphoramidon-pretreated guinea-pigs was desc-
ribed as not being associated with recruitment of gra-
nulocytes in the airways [49]. In contrast, an enhanced
chemiluminescence and an increase in arachidonate re-
lease from alveolar macrophages of guinea pigs exposed
to SP was observed, in comparison to alveolar macropha-
ges of guinea-pigs pretreated only with phosphoramidon
[49, 98]. These results suggest an ex-vivo activation of
alveolar macrophages by SP when administered by aero-
sol, since no alteration of the cell composition in the
BAL was observed, which probably indirectly modifies
the reactivity of macrophages through their phagocytic
properties. SP also stimulates guinea-pig macrophages
in vitro to induce the release of superoxide anions [115],
through stimulation of tachykinin NK, receptors and, to
a lesser extent, tachykinin NK, receptors [116]. Interest-
ingly, this effect was enhanced in cells taken from anti-
gen-sensitized guinea-pigs [117]. More recently, SP has
been shown to induce gelatinase production by alveolar
macrophages through tachykinin NK, receptor activa-
tion [118]. In contrast, alveolar macrophages both from
asthmatic patients and healthy subjects were only poorly
or not activated at all by SP in vitro [119].

Tawm et al. [120] reported that SP or EFS degranulate
tracheal mast cells, contributing to the neurogenic res-
ponses in the trachea [120]. This result is consistent with
the release of histamine by SP and capsaicin from guinea-
pig airway mast cells [121]. Moreover, in these con-
ditions, the mechanism of histamine release depends
predominantly on the activation of tachykinin NK; and
NK, receptors, as suggested by the inhibition of SP-
induced histamine release both by tachykinin NK; and
NK, receptor blockade [121]. In contrast, Hua et al.
[122] reported that SP may increase sensitivity of mast
cells to EFS-discharged mediators or facilitate the release
of mast cell-stimulating mediators from autonomic nerves,
rather than a direct stimulating effect of SP on mast cell
degranulation, as previously suggested by DEVILLIER ef
al. [30] and MousLy et al. [123]. However, the stimu-
lation of mast cells by SP may strongly contributes to
the airway effects of tachykinins.

Influence of inflammatory mediators on tachykinin
responses

In addition to their direct activity on the airways, many
inflammatory mediators may influence the responses of
various tachykinins. It was previously demonstrated, in
anaesthetized dog, that histamine administered by aerosol
induced an increase in the activity of C-fibres [37]. Anti-
gen challenge induced an enhancement of noncholiner-
gic contractile response to vagus nerves and EFS in
guinea-pig isolated trachea [124], or the response to SP
in the isolated airways of immunized rabbits [125]. In
addition, prostaglandin E, (PGE,), an inflammatory me-
diator derived from the cyclo-oxygenase pathway of
arachidonic acid metabolism, enhanced the pulmonary
chemoreflex (apnoea, bradycardia and hypotension) [36],
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and has been shown to increase the sensitivity of the
capsaicin-induced cough reflex in healthy human vol-
unteers [126]. Furthermore, high doses of PGE,, admin-
istered either by inhalation or injection, can stimulate
bronchopulmonary C-fibre endings [127, 128]. Similar-
ly, LTD, has been shown to cause the release of SP from
guinea-pig isolated trachea, or to potentiate the tachy-
kinin-mediated response in the guinea pig isolated air-
ways evoked by the threshold electrical stimulation of
the vagus nerve or EFS [129, 130]. In Fisher (F344)
rats, tachykinins cause bronchoconstriction and extra-
vasation of plasma protein by indirect mechanisms invol-
ving the activation of tachykinin NK; receptors, release
of serotonin (5-HT) and mast cell activation [29, 131].
Recently, tachykinins have been reported to be involved
in KCl-induced contraction of guinea-pig trachea [132].
Finally, bradykinin may also be involved in the effects
of tachykinin, since Fox et al. [38] reported that bradykinin
caused sensitization of airway sensory nerves and an
enhancement of the cough reflex in conscious guinea-

pigs [38].

Change in afferent innervation and tachykinin receptor
expression in the airway: correlation with airway hyper-
responsiveness

Various studies have suggested that following the
inflammatory process, the electrical stimulation of affer-
ent fibres is markedly modified, tachykinin synthesis by
these nerves is increased, and tachykinin receptor expres-
sion may be enhanced. Indeed, using sensitized guinea-
pigs, Riccio and co-workers [133, 134] reported an
approximative fourfold increase of the mechanical sen-
sitivity of A § afferent fibres following exposure to anti-
gen. Moreover, chronic airway inflammation after allergen
challenge in the guinea-pig increases excitatory NANC
nerve function, possibly by enhancing sensory neuro-pep-
tide production and/or release [124, 135]. An increase
in the synthesis of tachykinins from these fibres was
demonstrated by FiScHER et al. [4], following the inflam-
matory process of the airways after allergic reaction. In
this study, 24 h after allergen exposure in sensitized
guinea-pigs, there was a three- to fourfold enhancement
of tissue concentrations of NKA, SP and CGRP in the
lung, but not in the trachea. An increase in local tachykinin
synthesis was not demonstrated, but neuropeptides mea-
sured in the lung were probably synthesized in the cell
bodies of neurons located outside the lung, and then
passed into the organ via axonal transport [4]. These
authors also observed that 12 h after antigen stimula-
tion, preprotachykinin mRNA was increased by 20% in
nodose ganglions, but they did not detect significant
quantitative changes in jugular ganglions, which was sur-
prising, since nodose ganglions do not send tachykinin-
containing axons to the airways in healthy animals.

An increase in receptor synthesis and/or expression
has also been reported in rats in a model of chronic in-
flammatory disease produced by Mycoplasma pulmonis
infection [136, 137]. In this study, the rat airways in-
fected with M. pulmonis became abnormally sensitive
to tachykinin, as revealed by the increase in plasma leak-
age evoked by exposure to SP. Using an antibody to rat
tachykinin NK; receptor, BALUK et al. [138] demonstra-
ted a dramatic increase in the number of tachykinin NK;

receptors of endothelial cells, of postcapillary venules,
and of new capillary-size vessels following inflamma-
tory reaction due to M. pulmonis infection. These results
suggest that synthesis of tachykinins undergoes marked
change in the development of inflammation. Similar
results have been obtained in other organs, such as skin
[139]. McCarsoN and KraUsE [140] demonstrated that
tachykinin NK, and NKj; receptor mRNA expression in
the rat spinal cord dorsal horn is increased during adju-
vant or formalin-induced nociception.

Tachykinins and asthma

Whilst there appears to be convincing evidence that
sensory nerves and the subsequent tachykinin release
play a role in bronchial hyperresponsiveness in various
animal models, is there any evidence that sensory nerves
play a role in asthma? In asthmatic subjects, SP expo-
sure enhanced, maximal airway narrowing to metha-
choline 24 h later [52]. In allergic rhinitis, tachykinins
partially mimicked the immediate nasal response to anti-
gen by inducing nasal obstruction, recruitment of poly-
morphonuclear cells and leakage of albumin [141].
Immunohistochemical studies revealed conflicting evi-
dence of an increase in SP-containing nerves in asthma
[142—-144]. Using high performance liquid chromatog-
raphy, a reduction in SP-like immunoreactivity was ob-
served in central airways of subjects who died of asthma
or who were undergoing thoracotomy, compared with
age-matched, nondiseased subjects [145]. Because of
the rapid enzymatic cleavage in the extracellular micro-
environment, the tissue content of neuropeptides reflects
a balance between synthesis and release. In this condi-
tion, SP may be released during a severe asthmatic epi-
sode, and may then rapidly be degraded and not detect-
ed by the immunoassay [145]. This is consistent with
an increase in SP-like immunoreactivity detected in the
BAL fluid [146] and sputum [147] of asthmatics. This
would suggest that neuropeptides can be released wi-
thin the airway wall and, depending on the degree of
stimulation, lead to a reduction in neuropeptide tissue
content.

Recently, studies have documented possible changes in
neurokinin receptor expression in asthma. There appears
to be an increase in mRNA transcripts for tachykinin
NK, [148] and NK, [149] receptors in lung tissue from
asthmatics compared with nonasthmatics. The local re-
lease of neuropeptides may induce neuropeptide recep-
tor tachyphylaxis that leads to increased synthesis of
mRNA transcripts for these receptors. However, evi-
dence of an increase in the expression of neuropeptide
mRNA in sensory nerves and/or an increase in afferent
activity awaits documentation in humans. Finally, it is
also evident that several drug classes already in thera-
peutic use may interfere with sensory nerve function
[150].

Tachykinins and cough

Involvement of tachykinins in cough

The involvement of C-fibre receptors in cough is based
on experiments with capsaicin or with citric acid which
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can both stimulate pulmonary and bronchial C-fibre re-
ceptors [45, 151-154]. When given by aerosol, capsaicin
and citric acid are powerful tussigenic agents in humans
and other animals, and are now used as standard meth-
ods to study cough in preclinical and clinical studies
[155]. Other examples showing that C-fibre receptor
activation may cause cough were reported by FORSBERG
et al. [153], who studied cough induced in guinea-pigs
by inhalation of citric acid, by capsaicin, nicotine and
mechanical stimulation of the trachea. Administration of
large doses of capsaicin blocked the cough reflex due
to citric acid and capsaicin, but not that due to nicotine
and mechanical stimulation [153]. These authors con-
cluded that the first two stimuli (citric acid and capsai-
cin) acted via receptors and the last two (nicotine and
mechanical stimulation) via RARs. However, as sug-
gested by WippicoMmBE [40], capsaicin is probably not
very specific and selective for C-fibre, and can stimu-
late RARSs leading to cough [156, 157]. In addition, large
doses of capsaicin can damage or destroy A 6 myeli-
nated fibres as well as C-fibres [158]. In contrast, due
to peripheral and central nervous interactions, stimula-
tion of C-fibres may inhibit cough in some circumstances
[40].

Controversial reports have proposed tachykinins as
tussive agents by themselves in guinea-pigs [159-161].
In humans, SP aerosols given to healthy subjects or to
patients with asthma did not cause cough, but evoked
a sensation of tightness in the chest of asthmatics, pos-
sibly secondary to bronchoconstriction, indicating that
some sensory nerves were being stimulated [162]. In
another study, SP aerosols caused cough in patients with
upper airway infection but not in healthy subjects [163].

However, if tachykinins do not induce cough, they
can elicit a marked sensitizing effect on the cough re-
flex, through enhanced activation of RARs. Such an
action was first established by recordings of single fibres
from RARSs in rabbits by PRABHAKAR et al. [164], who
showed that systemic SP not only caused reflex changes
characteristic of stimulation of lung RARs but also
increased the impulse frequency in vagal single fibres
coming from RARs. This has recently been confirmed
by Fox et al. [161], who reported that SP, when given
by aerosol at concentrations up to 100 uM in the pre-
sence of the peptidase inhibitors, phosphoramidon and
captopril, did not evoke cough by itself. In electro-
physiological studies, SP applied directly onto receptive
fields in the trachea did not activate either single C-
fibres or A d-fibres. In contrast, prior exposure of guinea-
pigs to SP (10 nM) markedly enhanced citric acid-induced
cough.

In guinea-pigs, chronic treatment with the angiotensin-
converting enzyme (ACE) inhibitor, captopril, added to
drinking water and given for 2 weeks, can induce an
enhancement of citric acid-induced cough [165]. This
effect appears to be mediated via an accumulation of
bradykinin, since the bradykinin B, receptor antagonist,
Hoe 140 (Icatibant) inhibits this potentiation [166]. It
was proposed that the effect of bradykinin was likely
to be due to C-fibre sensitization and/or to a release of
tachykinins [166—168].

When given by aerosol, bradykinin, in the presence
of phosphoramidon and captopril, led to a marked increase
in citric acid-induced cough response; and when used in

in vitro studies, bradykinin produced an increase of 100—
400% in the firing of single vagal C-fibres stimulated
by capsaicin [165, 169]. Interestingly, patients treated
with ACE inhibitors developed cough, and cough resp-
onse to capsaicin was enhanced in these patients [170].
Finally, cough sensitivity to capsaicin in humans increas-
es during viral infections [171].

Effects of tachykinin receptor antagonists in cough

The view that tachykinins are involved in cough is
also supported by the observation that tachykinin anta-
gonists block cough in several experimental conditions.
The antitussive effect of tachykinin NK, receptor antag-
onists has been clearly demonstrated, but the effect of
tachykinin NK, receptor antagonists is still debated. In-
deed, SR 48968 inhibits, in a dose-dependent manner,
citric acid- [172—174] or capsaicin- [175] induced cough
in the unanaesthetized guinea-pig. This compound is
approximately 150 times more potent than codeine and,
in contrast to the latter, the effect of SR 48968 is not
inhibited by naloxone [172]. It must be noted that both
SR 48968 and codeine exert only a partial inhibition of
the cough response (approximately 60—70%) [172—174].
The inhibitory effect of SR 48968 is not dependent on
the reduction of citric acid-induced bronchoconstric-
tion, since in guinea-pigs pretreated with bronchodila-
tor doses of salbutamol, which did not reduce cough,
the effect of SR 48968 was still present [173]. Moreover,
a dissociation between cough and bronchoconstriction
has been clearly demonstrated by FORSBERG et al. [176],
who, in agreement with FuLLErR and CoLLier [177] and
Jackson [178], have shown that sodium cromoglycate
inhibited bronchoconstriction, but not citric acid-induced
cough, whereas lidocaine inhibited cough but not bron-
choconstriction. The antitussive effect of tachykinin NK,
receptor antagonists has also been shown with the com-
pound MEN 10627 against cough induced by allergen
challenge in guinea-pigs sensitized with ovalbumin [179].
However, Fox et al. [161] did not observe any effect of
SR 48968 on cough induced by citric acid in the guinea-
pig, and LaLLoO et al. [166] observed only a nonsigni-
ficant reduction.

Regarding the effect of tachykinin NK, antagonists,
various studies have shown no inhibitory activity. Such
results were reported using 140333 [173] or CP 99,994
[161] on citric acid-induced cough in the guinea-pig.
Similar observations have been reported in asthmatic pa-
tients using CP 99,994 against cough induced by inha-
lation of saline (increased osmolarity) [180]. In contrast,
Uik et al. [181] and Yasumitsu et al. [174] reported
that FK 888, an antagonist of tachykinin NK, receptors,
inhibited cough induced by phosphoramidon, tobacco
smoke, SP or citric acid. The reason for this discrep-
ancy is unclear. Recent pharmacological and biochem-
ical studies have suggested that two isoforms or two
subtypes of the tachykinin NK; receptor could exist
[182—184]. One hypothesis proposes that one isoform
or subtype of the tachykinin NK, receptor, to which
some tachykinin NK; receptor antagonists could bind
with higher affinity, would be implicated in cough con-
trol. Both GIRARD et al. [173] and YasumiItsu et al. [174]
have observed that tachykinin NK, receptor antagonists,
SR 140333 and FK 888, were able to potentiate the
effect of SR 48968, in terms of maximal effect.
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The question of a central or peripheral effect for the
inhibitory activity of tachykinin antagonists is not clear,
since central administration of these antagonists was not
performed. Yasumitsu ez al. [174] have, however, sug-
gested that the effects of the tachykinin NK, receptor
antagonist, FK 888, could be attributed to its peripheral
action. Indeed, intracerebroventricular (i.c.v) injection
of a tachykinin NK, receptor agonist induced foot-tap-
ping in gerbils, which could be inhibited by the central
nervous system-penetrant tachykinin NK, receptor antag-
onist, CP 99,994 [185], but not by a nonpenetrant
tachykinin NK, receptor antagonist [186]. The fact that
FK 888 did not inhibit SP (i.c.v. injection)-induced foot-
tapping in gerbils even at 10 mg-kg'! i.v., might sugg-
est that this compound may penetrate only poorly into
the central nervous system, but did not exclude a pos-
sible central effect for other compounds [174].

A possible interaction between RARs and C-fibre
receptors proposed by WippicoMBE [40] suggests a new
hypothesis for the mechanism of action of tachykinin
antagonists. As discussed above, activation of RARs
induces cough reflex, and stimulation of C-fibres with
a release of tachykinin that leads to the facilitation of
nerve transmission associated with RAR stimulation.
This explains why tachykinins, and especially SP, are
only moderate tussive agents or may have no action at
all, but dramatically potentiate cough induced by citric
acid. It is also suggested that citric acid and capsaicin
act both on RARs and C-fibre receptors, and are effi-
cient inducers of cough through the activation of RARs,
but this was observed through the increased stimulation
of C-fibre receptors. This might explain the partial inhi-
bition of the effects of tachykinin antagonists on citric
acid-induced cough [172-174], since these compounds
inhibit the effect of tachykinins released by C-fibres but
do not alter the stimulation of RARs. Therefore, tachykin-
in antagonists interact with the amplification phenome-
non induced by citric acid. The same observation could
apply to the inhibitory activity of codeine, since it was
previously described as an inhibitor of tachykinin release
[187, 188].

The sensitizing effect of C-fibre on the activation of
RARs is also suggested by the experiments of LALLOO
et al. [166], who showed that SR 48968 moderately
reduced citric acid-induced cough in guinea-pigs, but
abolished the enhancement of citric acid-induced cough
caused by exposure to ozone at 1 ppm for 3 h.

Conclusion

The mechanism of the development of bronchial hyper-
responsiveness is unclear. It is generally accepted that
pulmonary inflammation, mainly associated with a recruit-
ment of inflammatory cells and increased release of
inflammatory mediators inducing bronchoconstriction
and plasma protein extravasation, plays a key role in
the development of bronchial hyperresponsiveness [34,
189]. However, SP-induced airway hyperresponsiveness
in the guinea-pig is not associated with eosinophil infil-
tration in the lung tissue [49], suggesting a dissociation
between recruitment of inflammatory cells in the airways
and bronchopulmonary alterations, as was previously
observed for antigen-induced bronchial hyperrespons-
iveness [190-192]. Furthermore, it is also of interest that

the eosinophilia associated with bronchial hyperrespon-
siveness induced by PAF or allergen was not inhibited by
capsaicin [63, 193]. Hence, exposure of phosphoramidon-
pretreated guinea-pigs to SP is followed by an increase
in superoxide anion production and arachidonate release
by alveolar macrophages, suggesting that these cells may
play a key role in the development of bronchial hyper-
responsiveness induced by SP [49, 98]. SP also induced
an increase in microvascular leakage, allowing the plas-
ma protein extravasation which may be involved in the
bronchopulmonary alterations following allergic reac-
tion [189].

The present review suggests a specialization of tachy-
kinin NK, versus tachykinin NK, receptors in mediating
the development of microvascular leakage hypersensiti-
vity versus development of airway hyperresponsiveness
by exposure to SP or citric acid in guinea-pigs. Whether
or not the same situation applies exactly to human air-
ways is not known, although it is suggested by some
results. Thus, only tachykinin NK, receptors mediate
contraction of human isolated airways [194], and NKA,
but not SP, produces bronchoconstriction in asthmatics
[162]. Moreover, in allergic rhinitis, tachykinins induce
nasal obstruction mainly through tachykinin NK, recep-
tor activation, whereas albumin leakage and recruitment
of inflammatory cells probably involve tachykinin NK,
and NK, receptors [141]. This suggests that an anta-
gonist with mixed (and possibly balanced) affinity for
tachykinin NK, and NK, receptors could be of interest
in a wide investigation of the various components of
airway hyperresponsiveness and possible associations
with pulmonary inflammation. Joos et al. [195] recent-
ly reported that the dual antagonist FK224 did not offer
protection against NKA-induced bronchoconstriction in
a group of mild asthmatic patients. Since FK224 is a
moderate tachykinin receptor antagonist and was used
at doses that did not displace concentration-response
curves of NKA in asthmatics, further studies have to be
conducted with selective antagonists to provide a final
statement on the therapeutic interest of such compounds.
SR 48968 might be a candidate, since it has been report-
ed to be able to displace concentration-response curves
in asthmatics [196]. The question of a role of tachykinin
NK, and NK, receptors will have to be further recon-
sidered, since it was recently reported that the tachykinin
NK; receptor antagonist, SR 142801, markedly reduced
the bronchial hyperresponsiveness and the increased
microvascular leakage after exposure of guinea-pigs to
SP [12].

Thus, taken together, the results obtained with the var-
ious selective receptor antagonists provide pharmaco-
logical evidence that tachykinins play a role in delayed
bronchopulmonary alterations and suggest that tachykinin
receptor antagonists may be useful for investigating
mechanisms and possibly reducing airway functional
alterations in asthmatic patients.
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