Reactive airways dysfunction syndrome due to chlorine: sequential bronchial biopsies and functional assessment

C. Lemiére*, J-L. Malo*, M. Boutet**

ABSTRACT: Very little information is available on the acute histopathological bronchial alterations caused by reactive airways dysfunction syndrome (RADS). We had the opportunity to carry out sequential bronchial biopsies in a subject with RADS due to chlorine (60 h, 15 days, 2 and 5 months after the acute exposure), and also to assess spirometry and bronchial responsiveness to methacholine.

A 36 year old worker in a water-filtration plant (nonsmoker) abruptly inhaled high concentrations of chlorine on September 12, 1994. He experienced immediate nasal and throat burning, retrosternal burning and wheezing, and these symptoms persisted during and after the workshift. Two days later, he complained of retrosternal burning, dyspnoea and wheezing. Inspiratory wheezing was documented. His forced expiratory volume in one second (FEV1) was 66% of predicted and the provocative concentration of methacholine causing a 20% fall in FEV1 (PC20) was slightly abnormal (2.5 mg·mL⁻¹). On the following day, the patient underwent bronchial biopsies, which showed almost complete replacement of the epithelium by a fibrinohaemorrhagic exsudate. The subject was prescribed inhaled steroids.

Fifteen days after the accident, the PC20 was improved to 6 mg·mL⁻¹. Bronchial biopsies showed considerable epithelial desquamation with an inflammatory exudate and swelling of the subepithelial space. Five weeks after the accident, the PC20 was normal (57 mg·mL⁻¹). Inhaled steroids were stopped. Two months after the accident, the PC20 deteriorated to 4 mg·mL⁻¹. Biopsies then showed regeneration of the epithelium by basal cells and there was still a pronounced inflammatory infiltrate. Inhaled steroids were restarted. Three and five months later, the PC20 was normal (24 mg·mL⁻¹). Bronchial biopsies showed a greatly improved epithelium and reduction of the inflammatory infiltrate.

This case report shows that reactive airways dysfunction syndrome can cause acute, marked, though partially reversible, histological abnormalities. Inhaled steroids may modulate changes in bronchial responsiveness in this condition.

In 1985, Brooks et al. [1] defined the reactive airways dysfunction syndrome as an asthma-like condition that arises after a single inhalation of miscellaneous irritant agents. Bronchial hyperresponsiveness is the key functional alteration, with airway calibre most often remaining normal. Chlorine is one of the main causal agents, as described in later case reports [2, 3] and a recent review [4]. The time course of functional and histological changes after acute inhalation of irritant agents is not yet well known. The effect of inhaled steroids on bronchial hyperresponsiveness caused by RADS is also unknown. We report the case of a subject who developed RADS after a single high exposure to chlorine. Serial functional assessment was carried out and bronchial biopsies were performed on four occasions (60 h, 15 days, 2 and 5 months) after acute exposure.

Case report

A 36 year old male had been employed for 10 yrs in a water-filtration plant. He mixed gaseous chlorine with sodium chloride, which reacted to produce chlorine dioxide (ClO₂), and had to mix this with water. Five years earlier, the subject had experienced symptoms of burning throat, cough, dyspnoea and wheezing after chlorine inhalation, but these symptoms had been transient and the subject had not been symptomatic since that event. He was a nonsmoker.

On September 12, 1994, when the subject mixed chlorine dioxide with water, he suddenly experienced a strong odour and nasal, throat and retrosternal burning. A chlorine detector alarm had sounded. He had to leave the room where he worked. After the room had been ventilated, he returned to work. The clinical, functional and bronchoscopic features of the following events are listed in table 1. One hour later, the subject started noticing wheezing, retrosternal burning and headaches. These symptoms worsened in the evening and he could not sleep until 03:00 h. On the following day, he went back to work, and again experienced chest wheezing and retrosternal burning.

He was seen by a physician. The chest radiograph was normal. He was prescribed salbutamol on demand.
Table 1. – Time course of clinical, functional and histological features after acute exposure to chlorine

<table>
<thead>
<tr>
<th>Date</th>
<th>Symptoms</th>
<th>FEV1 L</th>
<th>FVC L</th>
<th>PC20 mg·mL⁻¹</th>
<th>Bronchial biopsies</th>
<th>BAL</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/09/94</td>
<td>Burning throat, dyspnoea, wheezing</td>
<td>ND</td>
<td>2.6</td>
<td>ND</td>
<td>73% epithelial desquamation, subepithelial haemorrhagic exudate with swelling, 116 cells·mm⁻²; CD45+ (27%)</td>
<td>ND</td>
<td>Normal 1600</td>
</tr>
<tr>
<td>14/09/94</td>
<td>Cough, dyspnoea, wheezing</td>
<td>2.6</td>
<td>3.5</td>
<td>ND</td>
<td>62% epithelial desquamation, subepithelial haemorrhagic exudate, 42 cells·mm⁻²; HLA-DR (48%), CD45+ (29%)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>15/09/94</td>
<td>Cough</td>
<td>3.5</td>
<td>4.6</td>
<td>ND</td>
<td>73% epithelial desquamation, subepithelial haemorrhagic exudate, 116 cells·mm⁻²; HLA-DR (48%), CD45+ (29%)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>21/09/94</td>
<td>None</td>
<td>3.8</td>
<td>4.7</td>
<td>ND</td>
<td>73% epithelial desquamation, subepithelial haemorrhagic exudate, 116 cells·mm⁻²; HLA-DR (48%), CD45+ (29%)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>27/09/94</td>
<td>None</td>
<td>3.8</td>
<td>4.8</td>
<td>ND</td>
<td>73% epithelial desquamation, subepithelial haemorrhagic exudate, 116 cells·mm⁻²; HLA-DR (48%), CD45+ (29%)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>19/10/94</td>
<td>None</td>
<td>3.9</td>
<td>4.7</td>
<td>ND</td>
<td>73% epithelial desquamation, subepithelial haemorrhagic exudate, 116 cells·mm⁻²; HLA-DR (48%), CD45+ (29%)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>17/11/94</td>
<td>None</td>
<td>3.8</td>
<td>4.7</td>
<td>ND</td>
<td>73% epithelial desquamation, subepithelial haemorrhagic exudate, 116 cells·mm⁻²; HLA-DR (48%), CD45+ (29%)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>14/12/94</td>
<td>Dyspnoea on exercise</td>
<td>3.8</td>
<td>4.7</td>
<td>ND</td>
<td>73% epithelial desquamation, subepithelial haemorrhagic exudate, 116 cells·mm⁻²; HLA-DR (48%), CD45+ (29%)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>14/02/95</td>
<td>None</td>
<td>3.7</td>
<td>4.7</td>
<td>ND</td>
<td>73% epithelial desquamation, subepithelial haemorrhagic exudate, 116 cells·mm⁻²; HLA-DR (48%), CD45+ (29%)</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

*: predicted value 3.9 L [5]; **: predicted value 4.6 L [5]. FEV1: forced expiratory volume in one second; FVC: forced vital capacity; PC20: provocative concentration of methacholine causing a 20% fall in FEV1; ND: not done; BDT: bronchodilation therapy; HLA-DR: human leucocyte antigen-DR.
On September 14, the subject was seen by a chest physi-
cian, who noticed inspiratory wheezing. Spirometry
showed a reduced forced expiratory volume in one sec-
ond (FEV1) value of 2.6 L (67% of predicted value (3.9
L) [5]), and forced vital capacity (FVC) 3.8 L (83% of
predicted value (4.6 L) [5]). The transfer factor of the
lung for carbon monoxide was normal. The provoca-
tive concentration of methacholine causing a 20% fall
in FEV1 (PC20) using a standardized procedure [6] (out-
put of nebulizer = 0.14 mL·min⁻¹) was 2.5 mg·mL⁻¹ (mild
bronchial hyperresponsiveness).

On September 15, i.e., 60 h after the acute exposure,
a first bronchoscopy was performed. The bronchial muc-
osa was hyperaemic with mucoid secretions. Features of
biopsies and bronchoalveolar lavage (BAL) are shown
in table 1 and figure 1a. The subject was then prescribed
inhaled steroids (budesonide 1,600 µg daily). He was
reassessed on September 21 (Day 9). He was asympto-
matic, with no bronchial obstruction, and methacholine
challenge showed borderline bronchial hyperrespon-
siveness (table 1). A second bronchoscopy was scheduled
on September 27 (Day 15). Hyperaemia of the bronchial
mucosa was less pronounced than 12 days previously.

Biopsies and BAL are described in table 1 and figure
1b. The dose of inhaled steroids was reduced to 800 µg
daily. On October 19 (Day 43), the subject had normal
spirometry and the methacholine test no longer showed
bronchial hyperresponsiveness. Inhaled steroids were
progressively decreased and stopped.

One month later, the subject complained of dyspnoea
and retrosternal burning during exercise. Spirometry was
normal, but the methacholine test showed mild bronchial
hyperresponsiveness. Inhaled steroids were restarted (bude-
sonide 800 µg daily). Bronchoscopy was repeated a third
time, 2 months after the initial event. The bronchial
mucosa was still hyperaemic. The abnormal features of
biopsies and BAL are shown in table 1 and figure 1c.

One month later, the subject was asymptomatic, and no
longer had bronchial hyperresponsiveness. Inhaled ster-
oids were maintained at the same dose. On February 14,
1995 (Day 166), the subject was completely asympto-
matic and had normal respiratory function. A last bron-
choscopy was performed. Features of bronchial biopsies
and BAL are shown in table 1 and figure 1d.

Discussion

We report a case of RADS that occurred after acute
exposure to chlorine. Although RADS secondary to chlo-
rine has been described by several authors [3, 7, 8], we
report for the first time, to our knowledge, serial mea-
surements of spirometry and bronchial responsiveness
combined with histological evaluation on four occasions,
shortly after acute exposure to chlorine. The histopatho-
logical features are those of acute desquamation of the
epithelium, with subepithelial haemorrhage and swel-
ling, inflammatory infiltrates, and regeneration of the
epithelium at a later stage (Day 72). Bronchial hyper-
responsiveness appeared to be modulated and reversed
by the use of inhaled steroids. Similar clinical, func-
tional and histological features were recently described
by our group in a subject who suffered RADS induced
by exposure to an isocyanate [9].

Few authors [1, 8] have reported histological findings
of RADS, and these were only documented at least one
year after the acute exposure. They showed mild chronic
inflammation and focal desquamation of the epithelial
layer, as well as bronchial wall thickening. There is
no report, to our knowledge, of the histological features
shortly after acute exposure to a common causal agent,
chlorine. In the various cases described in previous stud-
ies [1, 8], there was persistent histological damage at
least one year after exposure. The subjects also had per-
sistent airway hyperresponsiveness. The two subjects
reported by Brooks et al. [1], each of whom had bronchial
biopsies 1 and 3 yrs after exposure, had persistent bron-
chial obstruction and airway hyperresponsiveness. Among
the 15 subjects suffering from RADS studied by GAUTRIN
et al. [8], five subjects with bronchial hyperresponsive-
ness underwent bronchoscopy with bronchial biopsies.
These revealed desquamation of the epithelial layer,
inflammatory infiltrate and extended fibrosis, which was
the main feature. These authors did not perform biop-
sies in subjects who had returned to a baseline of nor-
mal responsiveness.

It is likely that persistent airway hyperresponsiveness
is related, in this condition as for asthma, to per-
sistent epithelial damage [10, 11], inflammation [12,
13], and/or structural changes. It has been shown in asth-
ma that structural changes related to bronchial wall thick-
ness with oedema and inflammation, or in airway smooth
muscle can modify airway responsiveness [14, 15]. The
present case also shows that functional integrity does
not necessarily mean histological integrity. Indeed, this
subject was no longer complaining of respiratory symp-
toms nor did he have airway hyperresponsiveness or air-
way obstruction, at a time when bronchial biopsies
showed epithelial desquamation, inflammatory infiltrate
and swelling of the subepithelial space, and BAL showed
lymphocytosis. It is interesting to note that the lym-
phocytosis, detected at the time of the third and fourth
bronchoscopies, only followed the appearance of inflam-
matory cells detected by immunohistochemistry within
the bronchial layer at an earlier stage.

The differential diagnosis of this case includes all
types of acute bronchitis, including that caused by viral
infection, which shares some histological features (des-
quamation of epithelium, infiltrate of inflammatory cells)
and for which inhaled steroids can also be of benefit.
In the present case, the history was, however, directly
related to chlorine exposure.

Inhaled steroids could have modulated the course of
the disease. Indeed, after the first attempt to stop inhaled
stereoids, the subject again complained of respiratory
symptoms when exposed to nonspecific irritants, and the
PC20 fell from 57 to 4 mg·mL⁻¹. He rapidly recovered
after 1 month of inhaled steroid treatment. Inhaled ster-
oids, therefore, seem to be efficacious in RADS, nor-
malizing nonspecific bronchial hyperresponsiveness and
improving symptoms. We do not know, however, what
the functional course and histological changes would
have been without inhaled steroids. The changes that
were noted might represent the natural history of the
disease, although it appeared that inhaled steroids mod-
ulated the course of bronchial responsiveness. Random-
ized studies on RADS using inhaled steroids versus
placebo would be necessary to make a precise evaluation
of the efficacy of inhaled steroids, and also to determine the optimum dose and duration of treatment after acute exposure. Alternatively, the effect of parenteral or inhaled steroids could be first assessed in animal models of RADS.

In conclusion, this case report shows that reactive airways dysfunction syndrome can cause acute, marked, though partially reversible, histological abnormalities. Inhaled steroids may modulate changes in bronchial responsiveness in this condition.

Acknowledgements: The authors would like to thank C. Leblanc and M. Bélanger for technical support and L. Schubert for reviewing the manuscript.

References