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Abstract 

The human respiratory tract from individuals with a normal lung function maintains a 

fine-tuned balance, asymptomatically colonized by the normal microbiota in the upper 

airways and sterile in the lower tract. This equilibrium may be disrupted by the 

exposure to insults such as cigarette smoke. In the respiratory tract, the complex and 

noxious nature of inhaled cigarette smoke alters host-microorganism interaction 

dynamics at all anatomical levels, causing infections in many cases. Moreover, 

continuous exposure to cigarette smoke itself causes deleterious effects on the host 

which can trigger the development of chronic respiratory diseases such as chronic 

obstructive pulmonary disease (COPD) and lung cancer. COPD is an irreversible 

airflow obstruction associated to emphysema, fibrosis, mucus hypersecretion and 

persistent colonization of the lower airways by opportunistic pathogens. COPD patients 

keep a stable but progressively worsening condition, and suffer periodic exacerbations 

caused, in most cases, by infections. Although smoking and smoking associated 

diseases are associated to high risk of infections, most therapies aim to reduce 

inflammatory parameters, but not necessarily take into account the presence of 

persistent colonizers. The effect of cigarette smoke on host-pathogen interaction 

dynamics in the respiratory tract, together with current and novel therapies is discussed. 



3 
 

Effect of cigarette smoke exposure on the human respiratory tract 

General features of the human respiratory tract 

The human upper respiratory tract is colonized since birth by the respiratory microbiota. 

Colonizers are commensal microorganisms and/or opportunistic pathogens [1]. 

Microorganisms encompassing the human respiratory microbiota are highly adapted to 

the host, and examples of co-evolution have been described for several human restricted 

opportunistic pathogens such as Neisseria meningitidis, N. gonorrhoeae and Moraxella 

catarrhalis [2]. Differently, the lower respiratory tract of individuals with normal lung 

function is sterile. Maintenance of lung sterility is physiologically relevant given that 

the lung is the region where the gas exchange takes place. Physical, anatomical and 

mechanical barriers including nasal hair, coughing and the mucociliary escalator 

constitute a first line of defense, avoiding the arrival of microorganisms to the lower 

tract. The mucociliary escalator is a layer of hydration above the lung tissue, which 

combined with mucus and the cilia present on the respiratory epithelium, is a trapping 

and removal system for foreign particles and invading pathogens [3]. Alveolar 

epithelium consists of type I and II pneumocytes. Type I pneumocytes display an 

anatomical function; by covering 95% of the alveolar surface, they generate a thin 

barrier between the alveolar space and the blood vessels. Type II, although covering 5% 

of the alveolar surface, are more abundant in number than type I pneumocytes [4]. 

Pneumocytes play crucial roles in lung defense: (i) maintenance of a low lung surface 

tension, stopping the surfaces for gas exchange sticking together by synthesis, secretion 

and reabsorption of pulmonary surfactant; (ii) transport of water and sodium; (iii) 

metabolism of xenobiotic compounds; (iii) lung regeneration; (iv) recognition of 

pathogen associated molecular patterns (PAMPs) by pattern recognition receptors 

(PRRs); (v) secretion of antimicrobial peptides; (vi) secretion of cytokines and 
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chemokines which orchestrate host inflammatory responses; (vii) generation of a barrier 

for pathogen entry by tight junction formation between epithelial cells [5,6,7,8,9]. 

Alveolar macrophages are lung resident professional phagocytes, responsible for 

eliminating microorganisms by phagocytosis and phagolysosomal processing. Alveolar 

macrophages also secrete inflammatory mediators directing, when necessary, neutrophil 

recruitment from the bloodstream to the alveolar space [10]. Moreover, airway cells 

produce a repertoire of soluble molecules which are essential players in microbial 

clearance of the lower tract. Those molecules, present in the aqueous fluid on the 

surface of the respiratory tract, include the complement system, antimicrobial peptides, 

lysozyme, lactoferrin, the secretory leukoprotease inhibitor (SLPI), and SP-A and SP-D 

surfactant proteins [11]. 

The fine equilibrium orchestrated to guarantee alveolar sterility is altered upon 

continuous host exposure to noxious particles and gases present in the environment. In 

this review, we will focus in the deleterious effect of continuous exposure to tobacco 

smoking and in the impact of such a noxious agent in the respiratory microbiota.  

 

Cigarettes and tobacco smoke: features and components 

A cigarette consists of a blend of tobaccos surrounded by a paper with a defined 

specification. Most cigarettes are filter tipped and tip ventilated. Tip ventilation means 

that mainstream smoke is diluted with a defined amount of air during a puff. The 

tobacco blend, the cigarette paper, the type and efficiency of the filter, and the degree of 

tip ventilation determine the chemical composition of cigarette smoke. When cigarettes 

are smoked, a complex mixture is inhaled into the respiratory system. During the 

sequence from lighting a cigarette to inhaling a puff of smoke, various overlapping 

chemical, physical and physiological phenomena occur, i.e. burning, pyrolysis, 
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pyrosynthesis, distillation, sublimation and condensation processes [12]. Tobacco 

smoke is an aerosol consisting of solid/liquid droplets (particulate- (“tar”) phase) in a 

gaseous phase. Approximately 4700 different substances have been identified in fresh 

tobacco smoke. These include neutral gases, carbon oxides, nitrogen oxides, amides, 

imides, lactames, carboxylic acids, lactones, esters, aldehydes, ketones, alcohols, 

phenols, amines, volatiles N-nitrosamines, N-heterocycles, hydrocarbons, nitriles, 

anhydrides, carbohydrates, ethers, nitro-compounds, metals and short-/long-living 

radicals. The quantity of the components in mainstream smoke of a single cigarette 

ranges from mg (water, carbon monoxide, carbon dioxide, nicotine) to pg levels 

(heterocyclic amines and heavy metals) [12]. Inhaled particulate matter (PM) is 

deposited in the respiratory tract depending on the particle size, with larger particles 

deposited in the upper and larger airways and smaller particles penetrating deep into the 

alveolar spaces. Ineffective clearance of this PM causes particle retention in lung 

tissues, resulting in a chronic, low-grade inflammation that may be important in the 

progression of chronic lung diseases associated to long term smoking [13]. In addition 

to chemicals, it has been documented the presence of microorganisms in cigarettes. All 

tobacco is cured, during which time there is a rapid growth of diverse bacteria and 

fungi, and accumulation of microbial toxins. Mesophilic bacteria have been found in 

both fresh and cured tobacco leaves. A range of additional bacteria and fungi have been 

found in minor amounts; moreover, storing cigarettes at high humidity results in 

elevated levels of fungi in the cigarette tobacco, leading to increased ergosterol 

concentrations in the smoke [14]. In addition, the bacterial metagenome of a cigarette-

based study revealed fifteen different classes of bacteria and a broad range of potential 

pathogens (Acinetobacter, Bacillus, Burkholderia, Clostridium, Klebsiella, 

Pseudomonas aeruginosa, Serratia, Campylobacter, Enterococcus, Proteus and 
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Staphylococcus) [15,16]. The risk of infection with potential pathogens by inhaling the 

mainstream smoke is currently unknown.  

 

Pathologies associated to tobacco smoking: an overview 

Smoking tobacco causes up to 90% of all lung cancers and is a significant risk factor for 

stroke and heart attacks. Smoking is also recognized as a risk factor for a variety of 

respiratory tract and systemic infections in children and adults, including common cold, 

influenza, pneumonia and tuberculosis [17]. Importantly, smoking is the leading risk 

factor for chronic obstructive pulmonary disease (COPD). COPD is characterized by a 

slowly progressive and irreversible airflow obstruction, loss of lung tissue leading to 

emphysema, and remodeling of tissue (fibrosis), both of which contribute to further 

lung function decline, reduced quality of life and high mortality [3,18]. Changes in the 

immune system, triggered by noxious particles and gases present in the tobacco smoke, 

lead to an inflammatory cellular infiltrate and to a pronounced and chronic lung 

inflammation. This in turn leads to other pathological changes including chronic 

obstructive bronchitis with fibrosis and obstruction of small airways, emphysema with 

enlargement of airspaces and destruction of lung parenchyma, loss of lung elasticity, 

and closure of small airways [19,20]. Tobacco smoke also leads to lung infections by 

pathogenic bacteria and viruses, which are key triggers of the acute worsening of COPD 

called exacerbation [21]. Exacerbations are an additional major factor in the morbidity 

and mortality caused by COPD, and the major healthcare costs associated with the 

disease [22,23,24]. 

 

Molecular and cellular mechanisms associated to COPD progression 
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The effect of cigarette smoke on airways immunity has been extensively characterized 

in COPD [19,25] (summarized in Fig. 1). COPD progression is associated with the 

accumulation of inflammatory mucous exudates in the lumen and infiltration of the wall 

by innate and adaptative inflammatory immune cells; these changes are coupled to a 

repair and remodeling process that ultimately thickens the airways walls [26]. An 

additional consequence of long term smoking is the persistent colonization of the lower 

respiratory tract by opportunistic pathogens, which often has an amplification effect and 

contributes to the progression of the disease [27,28]. 

Cigarette smoke has deleterious effects on the mucociliary system by promoting a 

decrease of the ciliary beating frequency, denudation of the ciliary epithelium, increase 

in the number of globet cells, submucosal gland hypertrophy and squamous cell 

metaplasia [29]. Cigarette smoke also damages the epithelial junctions, due to a 

significant down regulation of genes involved in the formation of tight junctions such as 

occludin, ZO1 and claudin-1, which leads to a decrease of the epithelial transepithelial 

resistance, correlated to an increase of epithelial permeability [30,31].  

Cigarette smoke activates the respiratory epithelium to produce inflammatory mediators 

(TNF-, IL-1, GM-CSF, IL-8, leukotriene B4-LTB4), responsible for activating and/or 

recruiting alveolar macrophages and neutrophils. Several studies have shown that there 

is an increase in the total number of neutrophils, macrophages and T lymphocytes in 

lung parenchyma and peripheral and central airways of COPD patients [20,32]. 

Epithelial cells in the small airways also secrete TGF-, which induces local fibrosis 

[19]. It is well-known that cigarette smoke induces epithelial cell death, which also 

amplifies the on-going inflammatory response [19]. Regarding the impact of cigarette 

smoke on the production of antimicrobial molecules by airway epithelial cells, the 

expression of the antimicrobial peptide hBD-2 in brushed bronchial epithelial cells from 
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COPD patients has been found to be lower than in tissues from healthy subjects [33]; in 

addition, significantly decreased levels of SP-A and SP-D surfactant proteins have been 

observed in smokers, compared to non-smokers [34]. Alveolar macrophages activated 

by cigarette smoke secrete a repertoire of inflammatory mediators, some of them (IL-8, 

GRO-, LTB4, MCP-1) being neutrophil chemoattractants [19]. Alveolar macrophages 

show an increase in the respiratory burst and release elastolytic enzymes, including 

matrix metalloproteinases (MMPs) and cathepsins K, L, S. Those enzymes, MMP-9 in 

particular, contribute to alveolar emphysema by enhancing the effects of elastase 

released by neutrophils [19]. Even though the inflammatory response of smokers is 

clearly different to that of non-smokers, the effect of cigarette smoke on the expression 

of TLR2, TLR4 and CD14 on alveolar macrophages and monocytes in response to their 

ligands is currently unclear [35,36]. Neutrophils, recruited due to the elevated levels of 

chemoattractants released by epithelial cells and macrophages, show an increase in the 

respiratory burst and secrete serine proteases (neutrophil elastase, cathepsin G, 

proteinase 3, MMP-8 and MMP-9) due to degranulation. The tripeptide proline-glycine-

proline PGP (and the N-acetylated-PGP form) is a selective neutrophil chemoattractant 

generated from extracellular matrix proteins through enzymatic reactions catalysed by 

MMP-8 and MMP-9. Leukotriene A4 hydrolase (LTB4H), produced by neutrophils and 

epithelial cells has a dual function. It generates LTB4 and it has aminopeptidase activity, 

thus inactivating PGP, which contributes to resolve neutrophilic inflammation in acute 

lung infections once the pathogen disappears. Smoke inhibits LTA4H aminopeptidase 

activity and stabilizes PGP through acetylation; in this way, neutrophil migration into 

the lung increases, leading to persistent inflammation [37]. Cigarette smoke exposure 

also results in a suppression of neutrophil caspase-3-like activity, which ultimately 

impairs its phagocytic activity [38]. Importantly, cigarette smoke exposure causes an 
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impairment of both alveolar macrophage and neutrophil phagocytic activity 

[39,40,41,42].  

Oxidative stress is an imbalance that occurs when reactive oxygen species (ROS) cannot 

be controlled by antioxidant defense mechanisms (enzymatic defense mechanisms are 

catalase, superoxide dismutase, glutathione peroxidase, etc.; non-enzymatic defense 

mechanisms are glutathione-GSH, ascorbate, urate, etc.) and results in harmful effects 

[19]. Oxidative stress plays a key role in the patho-physiology of smoking associated 

diseases [43,44,45]. ROS from cigarette smoke itself (the gas phase is estimated to 

contain over 1015 free radicals [46], and those produced by inflammatory cells (alveolar 

macrophages and neutrophils respiratory burst induced by cigarette smoke), result in 

inflammatory and destructive damaging effects [43]. These effects include: (i) an 

overall increase in proteases activity leading to emphysema; (ii) amplification of the 

inflammatory response due to ROS-induced activation of NF-B, resulting in increased 

secretion of IL-8 and TNF- and subsequent neutrophil recruitment; (iii) steroid 

resistance (see later); (iv) increased oxidation of arachidonic acid leading to the 

production of isoprostanes, which trigger bronchoconstriction and plasma exudation; (v) 

activation of TACE (TGF- converting enzyme), which promotes the shedding of TGF-

 and the activation of the epidermal growth factor receptor (EGFR), resulting in the 

increased expression of mucin (MUC5AC and MUCB) genes and the differentiation of 

mucus-secreting cells [19]. Differentiation of globet cells via EGFR activation and 

mucus secretion are also stimulated by IL-13 [47]. The excess production of mucus 

contributes to the occlusion of the small airways in COPD. Independently, ROS also 

activate JNK by Src, triggering MUC5AC expression in an EGFR independent manner 

[48].  
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Cigarette smoke has also an impact in the host adaptative immunity. Smoking has been 

shown to reduce serum levels of immunoglobulins in humans [49,50]. Moreover, there 

is an increase in the total number of T lymphocytes in lung parenchyma and peripheral 

and central airways of COPD patients, more prominent for CD8+ cells [19,51]. These 

patients show an increase of mature dendritic cells (DC) in the peripheral airways, and 

DC from smokers display an increased expression of CD80 and CD86 [52]; it is likely 

that material in the lung of smokers is taken up by these cells and presented by DC-

MHC I to CD8+ lymphocytes. Once activated by antigen-bearing DC, T cells may 

access to the lung parenchyma by means of their tissue specific chemokine receptors 

[20]. Indeed, T cells in peripheral airways of COPD patients show increased expression 

of CXCR3, preferably CD8+ cells. The ligands for CXCR3 (CXCL9, 10 and 11) are 

expressed by bronchial epithelial, airway smooth muscle cells and alveolar 

macrophages, which would contribute to CD8+ cell accumulation [19,53]. CD8+ 

cytotoxic T cells abundance in the lung from COPD patients correlates with the degree 

of airflow obstruction and emphysema; CD8+ cells cause alveolar epithelial cell death 

through the release of perforin and granzyme A and B [20,54]. CD4+ T cells are also 

found in large numbers in the airways and parenchyma of COPD patients, where they 

express STAT4, IFN- and Th1 cytokines, contributing to transendothelial migration of 

inflammatory cells to the airways; such a recruitment progresses as COPD worsens 

[20]. However, cigarette smoke suppresses Th1-mediated immune response to gram-

negative bacterial infections by interfering MyD88/IRAK signaling, thereby reducing 

LPS-induced TLR4 expression; this may contribute to explain the increased 

susceptibility to bacterial infections in COPD [55]. 

 

Effect of cigarette smoke exposure on bacterial infections 
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Continuous exposure to cigarette smoke has been associated to changes in the 

composition of the nasopharynx’s microbial community. The microflora from smoker´s 

nasopharynx contains larger proportions of opportunistic pathogens (S. pneumoniae, H. 

influenzae, M. catarrhalis and S. pyogenes) than never smokers which, in turn, mainly 

contain α-hemolytic streptococci, Peptostreptococcus spp., Prevotella spp. [56]. 

Interestingly, smoking cessation is associated with a reversion to the microflora found 

in never-smokers, thereby suggesting that cigarette smoke does indeed favor 

colonization by pathogens [57]. Supporting this notion, cigarette smoke enhances 

bacterial attachment to epithelial cells and promotes changes in virulence by modifying 

bacterial gene expression [58,59,60]. 

Cigarette smoke affects the upper airways. Tobacco smoke is a risk factor for 

periodontitis [61,62,63], being a more severe disease in smokers than in never-smokers 

[62,64]. Tobacco smoke promotes colonization of the sub-gingival space by 

opportunistic pathogens such as Porphyromonas gingivalis, Campylobacter rectus, 

Prevotella intermedia, Tannerella forsythia, Treponema denticola and Fusobacterium 

nucleatum [63,65,66,67]. Smoking cessation correlates with a decrease of periodontal 

pathogens prevalence [65,68]. P. gingivalis is the causative agent of chronic 

periodontitis; when bacteria are exposed to cigarette smoke, it has been observed an 

increased expression of the bacterial fimbrial protein FimA upon smoke exposure, 

which could abrogate bacteria triggered inflammatory responses and promote biofilm 

formation and bacterial adherence to the airway epithelium [58]. Cigarette smoke also 

promotes changes in sinosanal microbiota, driving the formation of reversible robust 

biofilms maybe involved in bacterial recalcitrant persistence in the nasal cavity [69]. 

Tobacco smoking is related to an increase in the occurrence and severity of acute 

infections by bacterial pathogens [61,70]. Moreover, second hand smoke causes a wide 
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range of diseases in children. Parental smoking increases S. pneumoniae infant carriage 

in general, and carriage of serotypes included in the conjugate 7-valent vaccine in 

particular [71]. Parental smoking also increases the risk of meningococcal meningitis 

[72,73], otitis media [1], and lower respiratory tract infection in infants younger than 

two years [74]. 

 

The “vicious circle hypothesis” 

An additional consequence of cigarette smoke exposure is the persistent colonization of 

the lower respiratory tract by opportunistic microbial pathogens. Such a chronic 

microbial colonization contributes to COPD progression, by further amplifying the 

inflammatory processes previously described. The so called “vicious circle hypothesis” 

was proposed to explain how chronic bacterial colonization of the lower airways in 

smokers can perpetuate inflammation and contribute to the progression of smoking 

associated diseases (Fig. 2) [28,75]. Central to this hypothesis is the notion that once 

pathogens have gained a foothold in the lower respiratory tract due to smoking-

triggered impairment of the mucociliary clearance, they persist by further blocking 

mucociliary clearance [28,75]. Cigarette smoke also up-regulates mucus production, 

impairs epithelial elastic properties, down-regulates the levels of IgA, and affects the 

phagocytic activity of professional phagocytes [19,41]. Together, these alterations 

facilitate bacterial colonization of the lower respiratory tract, associated to an 

exacerbation of the inflammatory response due to the recognition of PAMPs. Both 

bacterial products and bacterially produced epithelial damage contribute to the 

impairment of host immunity, further allowing the access of microorganisms to the 

lower respiratory tract in an endless loop, ultimately translated in high chronic 

inflammation and persistent microbial colonization of the lungs [75]. This endless loop 
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is known as “vicious circle” [28,75]. Microorganisms frequently isolated from the lower 

respiratory tract of smokers and of persistently colonized patients are nontypable 

Haemophilus influenzae (NTHi), M. catharralis, Streptococcus pneumoniae and 

Pseudomonas aeruginosa. The most frequently isolated pathogen, and the one 

responsible for a significant percentage of exacerbation episodes in COPD is NTHi 

[76,77]. 

 

Effect of smoking on NTHi, M. catharralis, S. pneumoniae and P. aeruginosa infections 

H. influenzae is a member of the human respiratory microflora located mainly in the 

oro- and nasopharynx. It colonizes 40-80% of healthy individuals, with a frequency of 

carriage higher in children than in adults [1,78]. Transmission occurs by aerosols or by 

direct contact with mucosal surfaces. H. influenzae carriers are simultaneously 

colonized with multiple strains in continuous renewal, mainly nontypable (non-

capsulated) [79,80]. H. influenzae is endowed with molecular strategies to adapt to the 

host, evade predation, and compete or coexist with other bacteria from the same or 

different species such as Staphylococcus aureus and S. pneumoniae [81]. Simultaneous 

presence of H. influenzae and S. pneumoniae in the upper respiratory tract triggers a 

synergistic inflammation, resulting in neutrophil recruitment to the respiratory mucosa 

[82]. Such a neutrophil recruitment leads to a selective killing of complement-opsonized 

S. pneumoniae. Co-colonisation by S. pneumoniae and H. influenzae provides a 

stimulus (the H. influenzae peptidoglycan) to induce neutrophil and complement-

mediated clearance of S. pneumoniae from the mucosal surface in a Nod-1 dependent 

manner [83,84]. H. influenzae co-colonisation seems to favor the selection of 

opsonophagocytosis-resistant S. pneumoniae capsule serotypes. Thus, competition with 

H. influenzae during their commensal state turns pneumococci into more virulent 
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populations, which may account for further development of invasive disease [85]. 

Although cigarette smoke does not seem to alter NTHi viability [41], host cell exposure 

to this irritant reduces bacterial invasion of respiratory epithelial cells (P. Morey, 

unpublished) and alveolar macrophages phagocytic ability [39,40,41,42]. Normally, 

alveolar macrophages efficiently phagocyte and degrade NTHi by phago-lysosomal 

fusion. Cigarette smoke dramatically impairs bacterial ingestion, but not the ingestion of 

inert particles. PI3K signaling including Akt phosphorylation is required for NTHi 

phagocytosis by alveolar macrophages. Cell exposure to cigarette smoke diminishes 

phospho-Akt levels, which may account for the observed phagocytic deficiency; same 

observations were made by using immortalized macrophages and macrophages from 

bronchoalveolar lavage (BAL) from both smokers and COPD patients, compared to 

macrophages from never-smokers [41]. The levels of lipopolysaccharide-binding 

protein (LBP) and CD14 are higher in BAL from smokers and COPD patients than from 

never-smokers [86]. Furthermore, cigarette smoke induces the expression of LBP and 

CD14 by airway epithelial cells. Both proteins inhibit NTHi-dependent secretion of IL-

8 and both NF-B and p38 MAPK signaling pathways, but they increase NTHi entry in 

epithelial cells [86]. Given that NTHi can reside inside a late endosome-like 

compartment [87], LBP and CD14 may indeed contribute to NTHi colonization by 

favoring bacterial location inside a subcellular niche. Regarding adaptative immune 

cells, the main lymphocyte subsets shown to proliferate in response to NTHi stimulation 

are CD8+ and natural killer [88]; in terms of CD4+ memory T cell responses, NTHi-

specific CD4+ memory T cells had memory phenotype with moderate to high CD27 and 

CCR7 expression, and circulated at low frequency in the peripheral blood of both 

healthy individuals and COPD patients [89]. 
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Community-acquired pneumonia (CAP) is a major cause of hospitalization and 

provokes high mortality rates. S. pneumoniae is the most commonly isolated pathogen 

from CAP patients [90]. Smoking is a substantial risk factor for pneumococcal 

pneumonia, especially in patients with COPD [91,92], and for invasive pneumococcal 

disease [93]. Smoke also seems to exacerbate the impairment in mucociliary clearance 

of S. pneumoniae induced by the ingestion of ethanol [94]. Cigarette smoke has been 

shown to prevent pneumococci complement-mediated phagocytosis by alveolar 

macrophages, while the ingestion of unopsonized bacteria or IgG-coated microspheres 

is not affected, thus impairing pulmonary bacterial clearance [95]. 

 M. catarrhalis causes about 10% of exacerbations in COPD and also colonises the 

lower airways of stable patients. Analysis of a collection of inflammatory parameters in 

sputum samples from a cohort of COPD patients before and after M. catarrhalis 

acquisition revealed a significant increase in IL-8, TNF- and neutrophil elastase levels 

after infection [96]. An independent study detected M. catarrhalis specific Th1 cells in 

BAL fluid of COPD infected patients [97]. Moreover, cigarette smoke showed to 

decrease M. catarrhalis-induced hBD-2 antimicrobial peptide expression and PGE2 

induction, and increased this bacterial load on bronchial epithelium from smokers [33].  

P. aeruginosa is another pathogen frequently isolated from pneumonia patients. 

Exposure to cigarette smoke increases host inflammation and decreases the rate of P. 

aeruginosa clearance [98]. The mechanism for the increased susceptibility to P. 

aeruginosa infection may be related to the fact that cigarette smoke decreases the 

expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene 

[99]. Epidemiological studies point that COPD patients are usually infected with one P. 

aeruginosa clone that remains in the lung for years, without evidence of interpatient 

transmission; during the chronic infection, the pathogen evolves towards an increased 
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mutation rate, increased antibiotic resistance, and reduced production of proteases, 

coexisting different morphotypes, and with patterns of infection and evolution that 

resemble those observed in cystic fibrosis [100]. 

Smokers are also more likely to suffer legionnaire’s disease [101] and tuberculosis 

[102]. Tobacco smoke leads to loss of weight and an increased mortality by impairing 

CD4+ T lymphocytes response to Mycobacterium tuberculosis, which is a key factor for 

macrophage IFN--dependent activation and subsequent killing of intracellular M. 

tuberculosis [103]. Finally, Mycoplasma pneumoniae is another common pathogen in 

COPD patients [104]. As a smoking consequence, the lung tries to maintain the redox 

environment by mounting and maintaining high levels of GSH and gluthatione 

reductase (GR) (GSH adaptative response). M. pneumoniae infection interferes with this 

lung adaptative response to cigarette smoking, causing oxidative stress, which may 

contribute to the progression of the chronic disease [105]. 

 

Impact of anti-inflammatory therapies on bacterial respiratory infections 

Given that inflammation is a main feature of smoking associated diseases, the control of 

both chronic and acute inflammation associated to exacerbations is a main issue in the 

treatment of these patients. COPD treatments are generally palliative, such as oxygen-

therapy, bronchodilators, mucolytic agents and antibiotics. The use of anti-

inflammatory agents is also a usual practice in these patients; an extensively used 

therapy is based in corticosteroids [106,107]. Considering that the upper (and frequently 

the lower) airways of patients receiving anti-inflammatory therapy are likely to be 

colonized, the effect of corticoids on pathogen-host interaction and/or microbial 

clearance should be taken into account. Exogenous blockage of the host inflammatory 

response orchestrated to face an infection could be detrimental for the host. Indeed, 
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although glucocorticoid (dexamethasone in particular) treatment of cultured cells upon 

infection by S. pneumoniae, Neisseria meningitidis or Aspergillus fumigatus has been 

shown to be effective in terms of inflammation reduction [108,109], adverse effects of 

steroid therapy on resistance to infection have been reported [110]. As an example, 

dexamethasone seems to impair P. aeruginosa clearance by suppressing iNOS 

expression and peroxynitrite production [111]. Independently, dexamethasone 

attenuates NTHi-induced NF-B activation, but also synergistically enhances NTHi-

induced TLR2 expression via specific up-regulation of MKP-1 that, in turn, leads to 

dephosphorylation and inactivation of p38 MAPK. Glucocorticoid-mediated inhibition 

of NTHi-induced MUC5A expression also occurs via MKP-1 dependent inhibition of 

p38 MAPK [112,113,114,115].  

Airway epithelium exposure to cigarette smoke does not modify NTHi adhesion to host 

cell surface, independently of the presence of dexamethasone. However, epithelial 

exposure to cigarette smoke reduces NTHi invasion of host cells, and this impairment is 

restored to normal levels when cigarette smoked cells are simultaneously treated with 

dexamethasone (P. Morey, unpublished). Differently, cigarette smoke-mediated 

impairment of alveolar macrophage ability to phagocyte NTHi is not restored when 

cells are simultaneously treated with dexamethasone [41]. The gluococorticoid 

fluticasone propionate seems to reduce the invasion of airway epithelial cells by S. 

pneumoniae [116].  

These observations, together with the fact that the use of inhaled corticoids in COPD 

increases the risk of hospitalization for pneumonia [117], support the notion that 

corticosteroids may facilitate infections, despite their efficacy on reducing smoking- 

associated inflammation. In addition, there is evidence indicating that exposition to 

cigarette smoke may limit the efficiency of corticosteroids to attenuate the transcription 
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of inflammatory genes by affecting the balance between histone acetyltransferases 

(HAT) and histone deacetylases (HDAC) [118] (Fig 3). 

Therefore, alternative treatments become compulsory. Although several novel 

possibilities are available and others are at different stages of clinical trials 

[107,119,120,121], it should be noted that in most cases there is no information on their 

impact on host-pathogen interaction. Even more, this important aspect is hardly 

considered as an outcome in the on-going clinical trials. Antioxidants and inhibitors of 

inducible nitric oxide synthase (iNOS) may be effective through inhibiting the 

generation of peroxynitrite. Available antioxidants are vitamins C and E and N-

acetylcysteine; selective iNOS inhibitors and peroxynitrite scavengers are under 

development [118]. The HDAC activator theophylline [122] and the therapeutic 

inhibition of PI3K [123] have been proved able to reverse the steroid resistance induced 

by cigarette smoke. Other therapies are (i) long acting bronchodilators (long acting 2 

agonist salmeterol; long acting anticholinergic tiotropium); mediator antagonists 

(inhibitors of LTB4, IL-8, TNF- or EGFR); (iii) protease inhibitors (endogenous 

antiproteases such as 1-antitrypsin, SLPI, elafin, cystatins, or small molecule 

inhibitors); (iv) novel anti-inflammatory treatments (inhibitors of phosphodiesterase 4, 

p38 MAPKinase, NF-kB or PI3K; resveratrol) [119,121]. Salmeterol has been shown to 

contribute to the protection of the airway epithelial barrier against P. aeruginosa [124]. 

The combination of salmeterol and fluticasone propionate has been shown to attenuate 

the inflammatory response of human airway epithelial cells infected with 

Staphylococcus aureus [125]. Although salmeterol also seems to protect the respiratory 

epithelium against H. influenzae-induced damage [126], in vivo data point that 

inhalation of this bronchodilator may negatively influence an effective clearance of 

NTHi from the murine respiratory tract [127]. Differently, resveratrol has been shown to 
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ameliorate Serratia marcescens induced acute pneumonia in rats [128], to inhibit 

swarming and virulence factor expression in Proteus mirabilis [129], to be a potential 

candidate against various Helicobacter pylori related gastric pathogenic processes 

[130], and to selectively inhibit Neisseria gonorrhoeae and N. meningitidis [131]. 

Finally, the increase of eukaryotic cAMP levels by adenylate cyclase activation could 

have a benefit in the treatment of NTHi infections by reducing bacterial invasion of 

epithelial cells (unpublished data). Same observations have been made for urinary tract 

infections caused by uropathogenic E. coli [132]. The PDE4 inhibitor rolipram has also 

shown to be effective in preventing P. aeruginosa-induced epithelial damage [133]. 

Opposite, PDE4 inhibition seems to impair host defense to K. pneumoniae infection in 

the pneumonia mouse model [134]. Altogether, these observations reinforce the notion 

that caution should be taken to extrapolate the findings obtained with one pathogen to 

infections caused by different microorganisms.  

 

Final remarks 

Alterations of the normal respiratory microflora caused by host exposure to external 

factors such as smoking have an undoubted impact in the host health and constitute a 

risk factor for chronic respiratory diseases and respiratory infections. Understanding the 

nature of host-pathogen dynamics is essential for the development of effective therapies, 

but the modulation of those dynamics by the host exposure to environmental agents 

should also be considered. Moreover, the therapies focused on the treatment of chronic 

respiratory diseases should also take into account the microbial component, if any, of 

the chronic disease, given that such therapies may influence, positive or negatively, on 

pathogen clearance and therefore, on the progression of the chronic disease. In 

conclusion, we would like to put forward the notion that, before approval by competent 
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authorities, any treatment likely to be taken by chronically colonized patients should be 

assessed in terms of its potential impact on host-pathogen dynamics, by testing a panel 

of relevant pathogens, and preferably including in vitro and in vivo approaches. 
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Figure legends 

Figure 1. Molecular mechanisms involved in COPD progression. Three major host 

alterations characteristic of COPD progression, fibrosis, emphysema and mucus 

hypersecretion, are shown in orange. A fourth characteristic of COPD progression, 

lower airways colonization by opportunistic pathogens, is shown in green. Microbial 

persistency is relevant because it greatly contributes to deleterious amplification of 

COPD features. Main host cell players in COPD patient airways, epithelial cells, 

alveolar macrophages (AM), neutrophils and CD8+ lymphocytes, are shown. Cigarette 

smoke activates epithelial cells to produce inflammatory mediators, activating and/or 

recruiting AMs and neutrophils. Epithelial cells also secrete the local fibrosis inducer 

TGF-. Chemokines produced by epithelial cells and AMs activate CD8+ lymphocytes, 

which release the emphysema mediators perforin and granzymes. AMs secrete 

neutrophil chemoattractants and release proteases. MMP-9 activates the fibrosis inducer 

TGF-and causes elastolysis, directly of by 1-AT inactivation. Proteases produced 
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AMs and neutrophils promote emphysema. Together with proteases, neutrophils secrete 

inflammatory mediators and granule content. Neutrophil chemoattractants are produced 

directly by AMs and epithelial cells, and by enzymatic activity of the AM protease 

MMP-9.  COPD patient airways display oxidative stress. Cigarette smoke itself contains 

high levels of ROS and both AMs and neutrophils increase their respiratory burst in 

response to cigarette smoke. High concentration of oxygen and nitrogen reactive species 

have multiple consequences: (i) decreased antiprotease defenses and proteolysis; (ii) 

activation of NF-B and neutrophil recruitment; (iii) steroid resistance; (iv) increased 

isoprostanes production; (v) mucus hypersecretion. 

 

 

Figure 2. Vicious circle hypothesis in COPD progression. Cigarette smoke is an 

external insult which damages the respiratory tract immunity, allowing the lower 

respiratory tract colonization by microorganisms. Such a colonization is a starting point 
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for a cyclic sequence of events which progressively contribute to a high level of chronic 

inflammation, tissue damage and fibrosis, together with persistent bacterial infection of 

the lower airways. Altogether, these processes continuously contribute to the non-

reversible progression of the chronic respiratory disease. 

 

 

Figure 3. Cigarette smoke and host insensitivity to corticoids. HDAC reduction 

caused by cigarette smoke may account for an amplification of the inflammatory 

response (right), and for insensitivity to the anti-inflammatory effect of corticoids (left). 

Cigarette smoke activates NFB in alveolar macrophages (right). Gene expression is 

activated by HAT-mediated core histone acetylation; histone acetylation of 

inflammatory gene promoters activated by NFB is increased in COPD. The increase in 

acetylation is due to a reduction of HDACs. HDACs reverse histone acetylation and 

switch off gene transcription. HDACs are inactivated by oxidative and nitrative stress. 
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Oxidative and nitrative stress leads to the formation of peroxynitrite, which nitrates 

HDAC, leading to its degradation, resulting in low HDAC levels and, subsequently, in 

an amplification of the inflammatory response. HDAC reduction by cigarette smoke 

induced oxidative stress impairs the response to corticoids. Corticoids bind 

glucocorticoid receptor (GR) and recruit HDAC to activated inflammatory genes; by 

reversing the acetylation of those genes, their transcription is switched off and the 

inflammation is reduced (left).  
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