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ABSTRACT

Estimates of influenza vaccine effectiveness have mostly been derived from non-randomized
studies and therefore are potentially confounded. The aim of the current study was to
estimate influenza vaccine effectiveness in preventing mortality among elderly taking both

measured and unmeasured confounding into account.

Information on patients aged 65 years and older from the computerized Utrecht General
Practitioner database on eight influenza epidemic and summer periods was pooled to
estimate influenza vaccine effectiveness in preventing mortality. Summer periods (during
which no effect of vaccination was expected) were used as a reference to control for

unmeasured confounding in epidemic periods.

After adjustment for measured confounders using multivariable regression analysis,
propensity score matching and propensity score regression analysis, influenza vaccination
reduced mortality risk (odds ratios 0.58 [95%CI: 0.46—-0.72], 0.56 [95%CI: 0.44—0.71], and
0.56 [95%CI: 0.45-0.69], respectively). After additional adjustment for unmeasured
confounding (as observed during summer periods) the association between influenza

vaccination and mortality risk decreased (odds ratio 0.69 [95%CI: 0.52—-0.92]).

We conclude that after state-of-the-art adjustment for typical confounders such as age, sex,
and co-morbidity status, unmeasured confounding still biased estimates of influenza vaccine
effectiveness. After taking unmeasured confounding into account, influenza vaccination is

still associated with substantial reduction in mortality risk.



INTRODUCTION

Annually, influenza epidemics are associated with high mortality rates, notably among elderly
persons [1,2]. Since the introduction of influenza vaccines, only one randomized double-blind
trial has been conducted among (younger) elderly and influenza infection was halved in the
vaccine group compared to the placebo group [3]. Large-scale trials evaluating more serious
outcomes such as mortality are not available, in part because of the large sample size
needed, and ethical constraints. Instead, several non-randomized observational studies have
set out to estimate the effects of influenza vaccination on serious outcomes among elderly
persons [4,5]. In 2007, results were published of a 10-year Health Maintenance Organisation
data-pooling project, including more observations than in all meta-analyses available, and
findings of substantial mortality reduction of the same magnitude as in previous studies were
observed [6]. However, recently there has been a debate regarding the validity of findings
from such non-randomized studies [7,8]. The main concern is that selection of patients for
influenza vaccination in daily practice has resulted in incomparable groups of vaccinated and
unvaccinated subjects which may have led to considerable confounding bias [9,10].

Several methods have been proposed to adjust for measured confounders, but
unmeasured confounders are likely to result in residual bias. For example functional health
status which is not routinely collected in medical databases, is an important potential
confounder [11,12]. Nichol et al. have quantified the potential effect of such an unmeasured
confounder using sensitivity analysis and showed that only in unlikely confounder scenarios
influenza vaccination was not associated with mortality reduction [6].

Alternatively, the use of reference periods has also been proposed to quantify
unmeasured confounding, since vaccine effectiveness can be considered known during
these periods [7]. For example, in pre-influenza [7,13,14], or summer periods [6,15,16],
during which influenza virus activity is low or virtually absent, vaccine effectiveness is
expected to be low or absent as well. Pre-influenza (or peri-influenza) epidemic periods,
however, can not be considered first choice reference periods, since influenza virus activity is

low (not absent) [2], and expected effects are therefore unclear. Therefore, the use of



Summer periods without influenza activity has been suggested as a valid reference
period to quantify unmeasured confounding [15,17]. We assessed mortality risk after
influenza vaccination among community-dwelling elderly persons in a retrospective cohort
study in The Netherlands during eight influenza seasons taking both measured and

unmeasured confounding into account.

METHODS

Study population

Until 2007, the Dutch immunization guideline on influenza vaccination recommended
vaccination for specific patient groups with high-risk medical conditions and for all persons
aged 65 years and older. In The Netherlands, the uptake of influenza vaccination among
elderly persons has been high with levels well over 70% after 1995 [5,18]. The computerised
medical database of the Netherlands University Medical Center Utrecht General Practitioner
Research Network includes cumulative information on approximately 60,000 patients enlisted
with 33 general practitioners. The database complies with Dutch guidelines on the use of
medical data for research purposes and has shown to be valid in influenza vaccination
studies [5,19]. Diagnoses are coded according to the International Classification of Primary
Care (ICPC) coding system.

For the present study, we obtained clinical information on all elderly aged 65 years
and older over eight influenza epidemic periods (1995/1996 — 2002/2003). In accordance
with previous studies, influenza epidemic periods were defined as periods of at least two
consecutive weeks in which each week accounted for at least 5% of the season’s total
number of influenza isolates [2,20]. The number of isolates was based on a laboratory-based
surveillance conducted by the Weekly Sentinel System of the Dutch Working Group on
Clinical Virology in the Netherlands. Importantly, peak-influenza periods were largely

separated from peak-RSV periods [2]. Furthermore, similar information was obtained during



eight consecutive summer periods in which influenza isolates were infrequent or absent
(1996-2003). Summer periods were defined as periods from week 20 through week 40 of
each year. This period was selected as a reference period, for which we expected
vaccination to provide no benefit, since influenza is not circulating during this summer period
[6,7,17]. In agreement with other observational studies, we collected extensive information
on exposure to seasonal influenza vaccination, and on potential confounders such as age
and sex, co-morbidity and prior health care consumption for each observation period.
Vaccination status was ascertained by registration of the ICPC-code R44.1. Earlier studies
have shown a high agreement between the presence of this code in the medical database
and vaccination status (kappa = 93%) [5]. Co-morbidity status was based on registration of
ICPC-codes during the twelve months preceding each year’s influenza epidemic period:
cardiovascular co-morbidity (acute myocardial infarction [code K75], congestive heart failure
[K77], other cardiovascular diseases [K74, K76, K78-K80, K82-K84, or stroke [K90]),
pulmonary co-morbidity (lung cancer [R84, R85], asthma or chronic obstructive pulmonary
disease [R91, R95, R96]), diabetes ([T90]), and malignancies ([B72, B73, B74, D74-77, S77,
T71,U75-77, X75-77, Y77]). Furthermore, health care consumption (hnumber of GP visits)

and medication use in the year preceding each influenza epidemic period were recorded [5].

Sample size

Based on an earlier study we expected a vaccination rate of 70% [18] and a mortality rate of
1% during influenza epidemic periods [2]. To detect a relative mortality risk reduction of at
least 30%, with a statistical power of 80% and a two-tailed alpha level of 0.05, the minimum

required sample size was 51,000 periods of observation.

Methods to adjust for measured confounders
Three hierarchical sets of confounders were defined: the first set included only demographics
(age and sex). The second set added information on prior health care use (humber of GP

visits) to the set of demographics. The third set added information on co-morbidity status



(cardiovascular and pulmonary co-morbidity, diabetes mellitus, and malignancies) and prior
medication use. We used three methods (i.e., propensity score matching, propensity score
regression analysis, and multivariable regression analysis) to adjust for the measured
confounders and each method was used on each of the three sets of confounders [8]. All

methods were used on data from influenza epidemic periods as well as summer periods.

Propensity score matching

Propensity scores estimate the probability of being exposed independent of outcome status
[21,22]. Using multivariable logistic regression modelling propensity scores of being
vaccinated were calculated including potential confounders as predictors in the model. We
developed different models for each set of confounders. The main aim of propensity score
analysis is to balance confounder distributions between groups of vaccinated and
unvaccinated subjects for different strata of the propensity score (ranging from 0 to 1).
Propensity scores were stratified in quintiles and subjects were pair-matched on vaccination
status within these quintiles. In the matched dataset the effects were estimated using
conditional logistic regression analysis. This procedure of matching and analysis was
repeated 1,000 times and the resulting distribution of effect estimates provided an overall

effect estimate (mean) and 95% confidence intervals.

Propensity score regression analysis

Similarly as in the propensity score matching procedure, propensity scores were calculated
for the different sets of confounders. These scores were included as a single, continuous
covariate in a logistic regression model estimating the association between influenza

vaccination and mortality.

Multivariable regression analysis
Multivariable logistic regression analysis was used to calculate effect estimates. Inclusion of

potential confounders in the model was based on univariate associations with both



vaccination status and mortality. Three hierarchical models were constructed, based on the
aforementioned sets of confounders.

Subijects could contribute more periods of observation to the study. These periods were
assumed to be independent, when applying propensity score methods and logistic
regression analysis. Subsequent influenza epidemic periods within one subject might,
however, not be independent. This was verified by means of generalized estimating
equations (GEE) techniques, which can be considered ‘longitudinal logistic regression
analysis [23], in which the influence of potential within-person dependency was assessed.
With GEE, potential within-person dependency is taken into account by assuming a
correlation structure for the observations within persons. We used the least restrictive
correlation structure, i.e., the unstructured correlation structure [23]. Clearly, if the results of
multivariable logistic regression analysis and GEE analysis are similar, within-subject
dependency does not affect estimates and the assumption that different observations within
the same subject can be considered independent holds.

Method to adjust for unmeasured confounders

For each method and each set of confounders an effect estimate was calculated in influenza
epidemic periods and in summer periods. The latter was used to adjust the effect estimate
obtained during the influenza periods for unobserved confounding. During summer periods
no benefit of vaccination was expected with an expected odds ratio as a measure of
association of 1.0 [6,7]. Therefore, deviations of the associations during summer periods
from the expected odds ratio (1.0) were used to quantify unmeasured confounding bias.
Effect estimates calculated for influenza epidemic periods were adjusted for the amount of
unobserved confounding measured during summer periods as follows: ORag; = ORepidemic /
ORsummer = exp(betacpidgemic — betasummer), iN Which OR stands for odds ratio and beta indicates
the regression coefficient for influenza vaccination [24]. To estimate a 95% confidence
interval of this ratio of odds ratios we sampled 100,000 times from the distributions of effect
estimates for epidemic and summer periods. By each time taking the ratio of the two

sampled numbers we arrived at a distribution based on 100,000 ratios. The 2:5% and 97-5%



quintiles of this distribution indicated the lower and upper bound of the 95% confidence
interval of the ratio of odds ratios, respectively. All analyses were carried out in R for

Windows (version 2.5.1).



RESULTS

Pooling of different influenza epidemic periods resulted in 50,906 periods of
observations of which in 37,501 periods (73.7%) the influenza vaccine was taken.
Vaccinated subjects were older and had a higher prevalence of different classes of co-
morbidity, and they more often visited their general practitioner during the twelve months
preceding influenza vaccination (Table 1). These numbers did not materially differ in
individual years that were studied. In total, 415 subjects died during the influenza epidemics
(1.04 per 1,000 weeks of observation). Pooling of consecutive summer periods resulted in
50,069 periods of observations, and in 36,757 periods (73.4%) influenza vaccine was
administered in the vaccination year preceding the summer period. During the summer
periods 854 subjects died (0.85 per 1,000 weeks). Without adjustment for confounders
influenza vaccination did not show a clear effect on mortality risk during influenza epidemic
periods (odds ratio (OR) 0.86, 95% confidence interval (Cl): 0.69 — 1.06), whereas during
summer periods influenza vaccination was associated with increased mortality risk (OR 1.20,
95% CI: 1.02 -1.40). Adjustments for age, sex, and prior health care use as confounders
resulted in a decreased odds ratio of the association between influenza vaccination and
mortality risk as compared with the crude association in all three methods (Figure 1).
Additional inclusion of the potential confounders presence of high-risk co-morbidity and
medication use did not importantly further affect the adjusted association, even though these
covariates were univariately associated with both vaccination status and mortality (Table 1).

After full adjustment using a multivariable logistic regression analysis an OR of 0.58
[95% CI: 0.46 - 0.72] was observed. PS regression analysis (OR 0.56, 95% CI: 0.45 - 0.69)
and PS matching (OR 0.56, 95% CI: 0.44 - 0.71) showed similar associations (Table 2).
Confounders were well balanced between groups of vaccinated and unvaccinated subjects
among different PS quintiles (Table 3). In accordance with Table 1, the group of patients with
the highest PS (those with the highest probability of being vaccinated) had the highest
prevalence of co-morbidity. Within quintiles of the PS vaccinated and non-vaccinated

subjects were comparable with respect to demographics and co-morbidity status.



After adjustment for measured confounders, influenza vaccination reduced mortality
during summer periods, even though no effect was expected (e.g. OR 0.84, 95% CI: 0.71 -
1.00, for multivariable regression analysis). Each estimated association during summer was
taken as a measure of unobserved confounding for the respective adjustment method
applied and the specific set of confounders. After adjustment for this unmeasured
confounding, the odds ratio of the association between influenza vaccination and mortality
risk stabilized at around 0.7 for all sets of confounders and all methods applied (Table 4 and
Figure 1).

For measured confounding adjusted estimates of vaccine effectiveness during
influenza seasons were somewhat lower for persons aged 75 years or older (OR 0.66, 95%
Cl: 0.50 - 0.86, for multivariable regression analysis) than among those aged 65 to 74 years
(OR 0.45, 95% CI: 0.30 - 0.67), though 95% confidence intervals were largely overlapping (p-
value for interaction 0.74). After additional adjustment for unmeasured confounders with
summer as reference, vaccine effectiveness remained higher in those aged 65 to 74 years
(OR 0.57, 95% CI: 0.33 — 0.98) than among persons aged 75 years and older (OR 0.76, 95%
Cl: 0.54 - 1.06).

Taking potential within-person dependency into account by means of GEE did not
materially affect the effect estimates: after full adjustment for measured confounders and
taking dependence into account, the multivariable regression analysis resulted in OR 0.58
[95% CI: 0.47 - 0.72] during epidemic periods and for summer data the OR was 0.84 [95%

Cl: 0.72 - 0.99].

DISCUSSION

This large cohort study among elderly persons covering several years of observation showed
that after adjustments for measured and unmeasured confounding, influenza vaccination was
associated with a reduction in mortality risk of approximately 30%. Since full adjustment for

measured confounders only, resulted in a higher estimate of vaccine effectiveness in



reducing mortality risk of approximately 40%, 10% of this observed effect is likely to be
caused by healthy user bias.

In a recently published study by Jackson et al.[14] on the effects of influenza
vaccination on the risk for community acquired pneumonia, no association was observed
(OR 0.92, 95% CI 0.77 — 1.10). In this study pre-influenza data were used to select potential
confounders for a multivariable model, such that the model provided an OR of 1.0. This
model was then used to assess the effects of influenza vaccination during the influenza
epidemic. Since influenza virus activity is low during pre-influenza periods [2], expected
effects are unclear and the expected association between influenza vaccination and the risk
for pneumonia may not be an OR of 1.0. Therefore, the selection of covariates for the
multivariable model based on pre-influenza data could be biased. Furthermore, subjects that
are likely to die shortly after vaccination, yet before the influenza epidemic, typically will not
apply for the vaccine. Adjustment for typical confounders such as age, sex, co-morbidity
status and health care use may not control this confounding [13]. However, the effects of
such possible deterioration of health status may have faded by the time the influenza
epidemic starts. During summer periods, however, the (short-term) reasons not to take the
vaccine will possibly have less impact on mortality rates than during pre-influenza periods
and, hence, these reference periods have been suggested previously to more validly
estimate unmeasured confounding [6]..

An important finding of our study is that during summer periods influenza vaccination
appeared associated with a reduction in mortality of approximately 16%, after adjustment for
measured confounders. This finding accords with previous studies and might indicate
potential for unmeasured confounding [13,15,16]. For example, in a population-based cohort
study over three influenza seasons by Ortqvist et al [15], influenza vaccine effectiveness
against all-cause mortality was estimated to be 44, 40 and 37% for the different seasons.
Adjustment by means of summer periods decreased these numbers to 14, 19, and 1%. The
low 1% effectiveness might be due to limited influenza virus activity during the 2000/2001

winter season. Our study size was adequate to answer our primary research question, but



inadequate to conduct analyses in individual influenza epidemic periods, in selected periods
during influenza seasons (e.g., early or late season periods), or to make comparisons
between seasons with high and low influenza virus activity. Ortqvist et al. defined the
influenza seasons as the period December 1 to April 30, whereas in our study influenza
epidemic periods were based on the relative number of influenza isolates per week [2], which
indicates the period with pronounced influenza activity. Hence, in the study by Ortqvist et al.
the effect estimate might be diluted due to inclusion of non-epidemic weeks. Since The
Netherlands is a relatively small country, nationwide surveillance data are appropriate to
indicate epidemic periods in the study region. In addition, since in the Netherlands almost all
citizens are registered with a specific general practice and general practitioners are the porte
d’entrée for secondary care, for the vast majority of subjects virtually all medical data
(including hospital discharge letters) is recorded in primary care. Hence, misclassification of
vaccination status, confounders, or mortality is unlikely. Furthermore, our study population
comprised community-dwelling elderly, whereas the Swedish study included nursing home
patients as well. Finally, in The Netherland, a country with no large-scale pneumococcal
vaccination, confounding by pneumococcal vaccination will not materially affect our
estimates of influenza vaccine effectiveness.

In a study by Mangtani et al [17], in which data over ten influenza epidemic and
summer periods was pooled, no effect of influenza vaccination was observed during summer
periods, after adjustment for observed confounders (OR 1.01 95% CI 0.96 — 1.06). During
influenza seasons influenza vaccination reduced the risk for death due to a respiratory
disease by 12% (OR 0.88, 95%CI 0.84 — 0.92). This estimate is lower than our estimated
30% reduction of all-cause mortality by influenza vaccination, possibly due to inclusion of
nursing home residents in the study by Mangtani et al. Furthermore, in this British study
effects of influenza vaccination might have been underestimated due to respiratory syncytial
virus activity during the influenza season. In our study peak-influenza periods were largely

separated from peak RSV-periods [2].



The observed odds ratio of the association between influenza vaccination and
mortality risk during summer periods was lower than anticipated (i.e. lower than 1.0), likely
due to healthy user bias. However, which unmeasured confounder yields this bias is unclear.
Functional health status has been proposed as an important confounder. In contrast, a study
in a population of Dutch elderly did not indicate functional health status as a confounder [25].
Another explanation might be that, even though influenza activity is hardly detected during
summer, still a small amount of virus is present and active, thus resulting in a reduced
mortality risk among vaccinated subjects. Since the number of reported isolates was low
during these periods, this seems highly unlikely. A third explanation might be that functional
health status deteriorates in the course of influenza illness during influenza epidemic periods
and remains impaired even several months after the influenza epidemic has ended [26]. If
this deterioration is prevented by influenza vaccination, lower mortality rates can be observed
after epidemic periods, i.e. during summer periods. Finally, selection bias might have been
the cause for the observed associations during summer. Only the subjects (either vaccinated
or unvaccinated) that survive influenza epidemic periods contribute to the observations on
summer periods. However, baseline characteristics for the vaccinated and non-vaccinated
subjects from epidemic and summer periods were similar. Furthermore, the association
between influenza vaccination and mortality adjusted for both measured and unmeasured
confounding remained constant for different sets of observed confounders (horizontal lines in
Figure 1), because adjustment for measured confounders has the same effect in both
influenza epidemic and summer periods. Therefore, it is unrealistic to assume that a selected
subgroup was included in summer periods and residual confounding or selection bias is
therefore unlikely to have affected the estimated associations of influenza vaccine

effectiveness materially.

We used three methods to adjust for observed confounders, namely multivariable
regression analysis, propensity score matching, and including propensity scores as a

covariate in regression analysis. These methods produced similar results and were also



approximately equally precise. These findings correspond to previous studies indicating that
these methods give approximately the same results [10,27-29]. PS methods can be useful to
reduce the number of covariates to be included in a multivariable model in case of limited
sample size. Unfortunately, PS methods as well as multivariable regression analysis can only
adjust for measured confounders. For interventions such as influenza vaccination, reference
periods can be used to adjust for unmeasured confounding. In other cases possible effects of
unmeasured confounding can be quantified by means of sensitivity analysis [6,30,31].

In conclusion, non-randomized studies on influenza vaccine effectiveness are prone
to confounding bias. Measured confounding can be adjusted by several methods. Using
summer reference periods is a powerful method to take unmeasured confounding into
account. After adjusting for both measured and unmeasured confounding influenza
vaccination was associated with a 30% reduction in all-cause mortality during influenza
epidemics among elderly persons and efforts should continue to vaccinate these high-risk

persons.

What is already known on this topic

Since most evidence for influenza vaccine effectiveness in terms of reduction of mortality
among elderly has been derived from non-randomized studies, selection of patients for
influenza vaccination may have induced confounding bias, and hence vaccine effects might
have been overestimated. Summer periods have been used as a reference period to quantify

unmeasured confounding.

What this study adds

In the present study, in which data on eight influenza epidemic periods was pooled,
unmeasured confounding taken into account by estimating influenza vaccine effectiveness
during a summer reference period. After adjustment for both measured and unmeasured
confounding influenza vaccination was still associated with substantial mortality risk

reduction.
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Table 4. Association between influenza vaccination and mortality during influenza

epidemic periods, adjusted for unmeasured confounding (as estimated during

summer periods).

METHOD

Multivariable regression

PS matching’

PS regression analysis’

analysis
Sets of Odds ratio (95% CI) Odds ratio (95% CI) Odds ratio (95% CI)
confounders’
Model 1 0.70 (0.54 - 0.91) 0.73 (0.56 — 0.95) 0.71 (0.53 - 0.93)
Model 2 0.68 (0.52 - 0.89) 0.71 (0.54 - 0.93) 0.69 (0.53 - 0.91)
Model 3 0.69 (0.52 - 0.92) 0.69 (0.52 - 0.92) 0.70 (0.53 - 0.92)

" model 1 includes observed demographics (age, sex), model 2 includes age, sex, and prior

health care use (number of GP visits), model 3 includes age, sex, prior health care use, co-

morbidity status (cardiovascular and pulmonary co-morbidity, diabetes mellitus and

malignancies), and medication use. Prior health care use was categorized in 4 categories (<

6 GP visits, 6 — 10 visits, 11 — 15 visits, > 15 visits).

* PS: Propensity Score.




Figure 1. Associations between influenza vaccination and mortality risk after

adjustment for confounders using different methods.
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Legend Figure 1:

For all panels: the epidemic effect estimates are based on the pooled influenza epidemic
periods. The summer effect estimates are based on the pooled summer periods. The
adjusted effect estimates are the influenza epidemic effect estimates adjusted for the amount
of unmeasured confounding during summer periods.

The first set of confounders includes age and sex, the second set additionally includes prior
health care use (number of GP visits), and the third set also includes co-morbidity status and

medication use.



