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ABSTRACT  

Estimates of influenza vaccine effectiveness have mostly been derived from non-randomized 

studies and therefore are potentially confounded. The aim of the current study was to 

estimate influenza vaccine effectiveness in preventing mortality among elderly taking both 

measured and unmeasured confounding into account. 

 

Information on patients aged 65 years and older from the computerized Utrecht General 

Practitioner database on eight influenza epidemic and summer periods was pooled to 

estimate influenza vaccine effectiveness in preventing mortality. Summer periods (during 

which no effect of vaccination was expected) were used as a reference to control for 

unmeasured confounding in epidemic periods.  

 

After adjustment for measured confounders using multivariable regression analysis, 

propensity score matching and propensity score regression analysis, influenza vaccination 

reduced mortality risk (odds ratios 0.58 [95%CI: 0.46–0.72], 0.56 [95%CI: 0.44–0.71], and 

0.56 [95%CI: 0.45–0.69], respectively). After additional adjustment for unmeasured 

confounding (as observed during summer periods) the association between influenza 

vaccination and mortality risk decreased (odds ratio 0.69 [95%CI: 0.52–0.92]). 

 

We conclude that after state-of-the-art adjustment for typical confounders such as age, sex, 

and co-morbidity status, unmeasured confounding still biased estimates of influenza vaccine 

effectiveness. After taking unmeasured confounding into account, influenza vaccination is 

still associated with substantial reduction in mortality risk.  

 

 

 

 

 



 

 

INTRODUCTION  

Annually, influenza epidemics are associated with high mortality rates, notably among elderly 

persons [1,2]. Since the introduction of influenza vaccines, only one randomized double-blind 

trial has been conducted among (younger) elderly and influenza infection was halved in the 

vaccine group compared to the placebo group [3]. Large-scale trials evaluating more serious 

outcomes such as mortality are not available, in part because of the large sample size 

needed, and ethical constraints. Instead, several non-randomized observational studies have 

set out to estimate the effects of influenza vaccination on serious outcomes among elderly 

persons [4,5]. In 2007, results were published of a 10-year Health Maintenance Organisation 

data-pooling project, including more observations than in all meta-analyses available, and 

findings of substantial mortality reduction of the same magnitude as in previous studies were 

observed [6]. However, recently there has been a debate regarding the validity of findings 

from such non-randomized studies [7,8]. The main concern is that selection of patients for 

influenza vaccination in daily practice has resulted in incomparable groups of vaccinated and 

unvaccinated subjects which may have led to considerable confounding bias [9,10].  

Several methods have been proposed to adjust for measured confounders, but 

unmeasured confounders are likely to result in residual bias.  For example functional health 

status which is not routinely collected in medical databases, is an important potential 

confounder [11,12]. Nichol et al. have quantified the potential effect of such an unmeasured 

confounder using sensitivity analysis and showed that only in unlikely confounder scenarios 

influenza vaccination was not associated with mortality reduction [6].  

Alternatively, the use of reference periods has also been proposed to quantify 

unmeasured confounding, since vaccine effectiveness can be considered known during 

these periods [7]. For example, in pre-influenza [7,13,14], or summer periods [6,15,16], 

during which influenza virus activity is low or virtually absent, vaccine effectiveness is 

expected to be low or absent as well. Pre-influenza (or peri-influenza) epidemic periods, 

however, can not be considered first choice reference periods, since influenza virus activity is 

low (not absent) [2], and expected effects are therefore unclear. Therefore, the use of 



 

 

Summer periods without influenza activity  has been suggested as a valid reference 

period to quantify unmeasured confounding [15,17]. We assessed mortality risk after 

influenza vaccination among community-dwelling elderly persons in a retrospective cohort 

study in The Netherlands during eight influenza seasons taking both measured and 

unmeasured confounding into account. 

 

 

METHODS 

 

Study population 

Until 2007, the Dutch immunization guideline on influenza vaccination recommended 

vaccination for specific patient groups with high-risk medical conditions and for all persons 

aged 65 years and older. In The Netherlands, the uptake of influenza vaccination among 

elderly persons has been high with levels well over 70% after 1995 [5,18]. The computerised 

medical database of the Netherlands University Medical Center Utrecht General Practitioner 

Research Network includes cumulative information on approximately 60,000 patients enlisted 

with 33 general practitioners. The database complies with Dutch guidelines on the use of 

medical data for research purposes and has shown to be valid in influenza vaccination 

studies [5,19]. Diagnoses are coded according to the International Classification of Primary 

Care (ICPC) coding system.  

For the present study, we obtained clinical information on all elderly aged 65 years 

and older over eight influenza epidemic periods (1995/1996 – 2002/2003). In accordance 

with previous studies, influenza epidemic periods were defined as periods of at least two 

consecutive weeks in which each week accounted for at least 5% of the season’s total 

number of influenza isolates [2,20]. The number of isolates was based on a laboratory-based 

surveillance conducted by the Weekly Sentinel System of the Dutch Working Group on 

Clinical Virology in the Netherlands. Importantly, peak-influenza periods were largely 

separated from peak-RSV periods [2]. Furthermore, similar information was obtained during 



 

 

eight consecutive summer periods in which influenza isolates were infrequent or absent 

(1996-2003). Summer periods were defined as periods from week 20 through week 40 of 

each year. This period was selected as a reference period, for which we expected 

vaccination to provide no benefit, since influenza is not circulating during this summer period 

[6,7,17]. In agreement with other observational studies, we collected extensive information 

on exposure to seasonal influenza vaccination, and on potential confounders such as age 

and sex, co-morbidity and prior health care consumption for each observation period. 

Vaccination status was ascertained by registration of the ICPC-code R44.1. Earlier studies 

have shown a high agreement between the presence of this code in the medical database 

and vaccination status (kappa = 93%) [5]. Co-morbidity status was based on registration of 

ICPC-codes during the twelve months preceding each year’s influenza epidemic period:  

cardiovascular co-morbidity (acute myocardial infarction [code K75], congestive heart failure 

[K77], other cardiovascular diseases [K74, K76, K78-K80, K82-K84, or stroke [K90]), 

pulmonary co-morbidity (lung cancer [R84, R85], asthma or chronic obstructive pulmonary 

disease [R91, R95, R96]), diabetes ([T90]), and malignancies ([B72, B73, B74, D74-77, S77, 

T71, U75-77, X75-77, Y77]). Furthermore, health care consumption (number of GP visits) 

and medication use in the year preceding each influenza epidemic period were recorded [5].  

 

Sample size 

Based on an earlier study we expected a vaccination rate of 70% [18] and a mortality rate of 

1% during influenza epidemic periods [2]. To detect a relative mortality risk reduction of at 

least 30%, with a statistical power of 80% and a two-tailed alpha level of 0.05, the minimum 

required sample size was 51,000 periods of observation.  

 

Methods to adjust for measured confounders 

Three hierarchical sets of confounders were defined: the first set included only demographics 

(age and sex). The second set added information on prior health care use (number of GP 

visits) to the set of demographics. The third set added information on co-morbidity status 



 

 

(cardiovascular and pulmonary co-morbidity, diabetes mellitus, and malignancies) and prior 

medication use. We used three methods (i.e., propensity score matching, propensity score 

regression analysis, and multivariable regression analysis) to adjust for the measured 

confounders and each method was used on each of the three sets of confounders [8]. All 

methods were used on data from influenza epidemic periods as well as summer periods.  

 

Propensity score matching  

Propensity scores estimate the probability of being exposed independent of outcome status 

[21,22]. Using multivariable logistic regression modelling propensity scores of being 

vaccinated were calculated including potential confounders as predictors in the model. We 

developed different models for each set of confounders. The main aim of propensity score 

analysis is to balance confounder distributions between groups of vaccinated and 

unvaccinated subjects for different strata of the propensity score (ranging from 0 to 1). 

Propensity scores were stratified in quintiles and subjects were pair-matched on vaccination 

status within these quintiles. In the matched dataset the effects were estimated using 

conditional logistic regression analysis. This procedure of matching and analysis was 

repeated 1,000 times and the resulting distribution of effect estimates provided an overall 

effect estimate (mean) and 95% confidence intervals. 

  

Propensity score regression analysis 

Similarly as in the propensity score matching procedure, propensity scores were calculated 

for the different sets of confounders. These scores were included as a single, continuous 

covariate in a logistic regression model estimating the association between influenza 

vaccination and mortality. 

 

Multivariable regression analysis  

Multivariable logistic regression analysis was used to calculate effect estimates. Inclusion of 

potential confounders in the model was based on univariate associations with both 



 

 

vaccination status and mortality. Three hierarchical models were constructed, based on the 

aforementioned sets of confounders.  

Subjects could contribute more periods of observation to the study. These periods were 

assumed to be independent, when applying propensity score methods and logistic 

regression analysis. Subsequent influenza epidemic periods within one subject might, 

however, not be independent. This was verified by means of generalized estimating 

equations (GEE) techniques, which can be considered ‘longitudinal logistic regression 

analysis [23], in which the influence of potential within-person dependency was assessed. 

With GEE, potential within-person dependency is taken into account by assuming a 

correlation structure for the observations within persons. We used the least restrictive 

correlation structure, i.e., the unstructured correlation structure [23]. Clearly, if the results of 

multivariable logistic regression analysis and GEE analysis are similar, within-subject 

dependency does not affect estimates and the assumption that different observations within 

the same subject can be considered independent holds. 

Method to adjust for unmeasured confounders 

For each method and each set of confounders an effect estimate was calculated in influenza 

epidemic periods and in summer periods. The latter was used to adjust the effect estimate 

obtained during the influenza periods for unobserved confounding. During summer periods 

no benefit of vaccination was expected with an expected odds ratio as a measure of 

association of 1.0 [6,7]. Therefore, deviations of the associations during summer periods 

from the expected odds ratio (1.0) were used to quantify unmeasured confounding bias. 

Effect estimates calculated for influenza epidemic periods were adjusted for the amount of 

unobserved confounding measured during summer periods as follows: ORadj = ORepidemic / 

ORsummer = exp(betaepidemic – betasummer), in which OR stands for odds ratio and beta indicates 

the regression coefficient for influenza vaccination [24]. To estimate a 95% confidence 

interval of this ratio of odds ratios we sampled 100,000 times from the distributions of effect 

estimates for epidemic and summer periods. By each time taking the ratio of the two 

sampled numbers we arrived at a distribution based on 100,000 ratios. The 2·5% and 97·5% 



 

 

quintiles of this distribution indicated the lower and upper bound of the 95% confidence 

interval of the ratio of odds ratios, respectively. All analyses were carried out in R for 

Windows (version 2.5.1).  

 

 



 

 

RESULTS 

Pooling of different influenza epidemic periods resulted in 50,906 periods of 

observations of which in 37,501 periods (73.7%) the influenza vaccine was taken. 

Vaccinated subjects were older and had a higher prevalence of different classes of co-

morbidity, and they more often visited their general practitioner during the twelve months 

preceding influenza vaccination (Table 1). These numbers did not materially differ in 

individual years that were studied. In total, 415 subjects died during the influenza epidemics 

(1.04 per 1,000 weeks of observation). Pooling of consecutive summer periods resulted in 

50,069 periods of observations, and in 36,757 periods (73.4%) influenza vaccine was 

administered in the vaccination year preceding the summer period. During the summer 

periods 854 subjects died (0.85 per 1,000 weeks). Without adjustment for confounders 

influenza vaccination did not show a clear effect on mortality risk during influenza epidemic 

periods (odds ratio (OR) 0.86, 95% confidence interval (CI): 0.69 – 1.06), whereas during 

summer periods influenza vaccination was associated with increased mortality risk (OR 1.20, 

95% CI: 1.02 -1.40). Adjustments for age, sex, and prior health care use as confounders 

resulted in a decreased odds ratio of the association between influenza vaccination and 

mortality risk as compared with the crude association in all three methods (Figure 1). 

Additional inclusion of the potential confounders presence of high-risk co-morbidity and 

medication use did not importantly further affect the adjusted association, even though these 

covariates were univariately associated with both vaccination status and mortality (Table 1).  

After full adjustment using a multivariable logistic regression analysis an OR of 0.58 

[95% CI: 0.46 - 0.72] was observed. PS regression analysis (OR 0.56, 95% CI: 0.45 - 0.69) 

and PS matching (OR 0.56, 95% CI: 0.44 - 0.71) showed similar associations (Table 2). 

Confounders were well balanced between groups of vaccinated and unvaccinated subjects 

among different PS quintiles (Table 3). In accordance with Table 1, the group of patients with 

the highest PS (those with the highest probability of being vaccinated) had the highest 

prevalence of co-morbidity. Within quintiles of the PS vaccinated and non-vaccinated 

subjects were comparable with respect to demographics and co-morbidity status.  



 

 

After adjustment for measured confounders, influenza vaccination reduced mortality 

during summer periods, even though no effect was expected (e.g. OR 0.84, 95% CI: 0.71 - 

1.00, for multivariable regression analysis). Each estimated association during summer was 

taken as a measure of unobserved confounding for the respective adjustment method 

applied and the specific set of confounders. After adjustment for this unmeasured 

confounding, the odds ratio of the association between influenza vaccination and mortality 

risk stabilized at around 0.7 for all sets of confounders and all methods applied (Table 4 and 

Figure 1).  

For measured confounding adjusted estimates of vaccine effectiveness during 

influenza seasons were somewhat lower for persons aged 75 years or older (OR 0.66, 95% 

CI: 0.50 - 0.86, for multivariable regression analysis) than among those aged 65 to 74 years 

(OR 0.45, 95% CI: 0.30 - 0.67), though 95% confidence intervals were largely overlapping (p-

value for interaction 0.74). After additional adjustment for unmeasured confounders with 

summer as reference, vaccine effectiveness remained higher in those aged 65 to 74 years 

(OR 0.57, 95% CI: 0.33 – 0.98) than among persons aged 75 years and older (OR 0.76, 95% 

CI: 0.54 - 1.06).  

Taking potential within-person dependency into account by means of GEE did not 

materially affect the effect estimates: after full adjustment for measured confounders and 

taking dependence into account, the multivariable regression analysis resulted in OR 0.58 

[95% CI: 0.47 - 0.72] during epidemic periods and for summer data the OR was 0.84 [95% 

CI: 0.72 - 0.99]. 

 

DISCUSSION 

This large cohort study among elderly persons covering several years of observation showed 

that after adjustments for measured and unmeasured confounding, influenza vaccination was 

associated with a reduction in mortality risk of approximately 30%. Since full adjustment for 

measured confounders only, resulted in a higher estimate of vaccine effectiveness in 



 

 

reducing mortality risk of approximately 40%, 10% of this observed effect is likely to be 

caused by healthy user bias.  

In a recently published study by Jackson et al.[14] on the effects of influenza 

vaccination on the risk for community acquired pneumonia, no association was observed 

(OR 0.92, 95% CI 0.77 – 1.10). In this study pre-influenza data were used to select potential 

confounders for a multivariable model, such that the model provided an OR of 1.0. This 

model was then used to assess the effects of influenza vaccination during the influenza 

epidemic. Since influenza virus activity is low during pre-influenza periods [2], expected 

effects are unclear and the expected association between influenza vaccination and the risk 

for pneumonia may not be an OR of 1.0. Therefore, the selection of covariates for the 

multivariable model based on pre-influenza data could be biased. Furthermore, subjects that 

are likely to die shortly after vaccination, yet before the influenza epidemic, typically will not 

apply for the vaccine. Adjustment for typical confounders such as age, sex, co-morbidity 

status and health care use may not control this confounding [13]. However, the effects of 

such possible deterioration of health status may have faded by the time the influenza 

epidemic starts. During summer periods, however, the (short-term) reasons not to take the 

vaccine will possibly have less impact on mortality rates than during pre-influenza periods 

and, hence, these reference periods have been suggested previously to more validly 

estimate unmeasured confounding [6].. 

An important finding of our study is that during summer periods influenza vaccination 

appeared associated with a reduction in mortality of approximately 16%, after adjustment for 

measured confounders. This finding accords with previous studies and might indicate 

potential for unmeasured confounding [13,15,16]. For example, in a population-based cohort 

study over three influenza seasons by Ortqvist et al [15], influenza vaccine effectiveness 

against all-cause mortality was estimated to be 44, 40 and 37% for the different seasons. 

Adjustment by means of summer periods decreased these numbers to 14, 19, and 1%. The 

low 1% effectiveness might be due to limited influenza virus activity during the 2000/2001 

winter season. Our study size was adequate to answer our primary research question, but 



 

 

inadequate to conduct analyses in individual influenza epidemic periods, in selected periods 

during influenza seasons (e.g., early or late season periods), or to make comparisons 

between seasons with high and low influenza virus activity. Ortqvist et al. defined the 

influenza seasons as the period December 1 to April 30, whereas in our study influenza 

epidemic periods were based on the relative number of influenza isolates per week [2], which 

indicates the period with pronounced influenza activity. Hence, in the study by Ortqvist et al. 

the effect estimate might be diluted due to inclusion of non-epidemic weeks. Since The 

Netherlands is a relatively small country, nationwide surveillance data are appropriate to 

indicate epidemic periods in the study region. In addition, since in the Netherlands almost all 

citizens are registered with a specific general practice and general practitioners are the porte 

d’entrée for secondary care, for the vast majority of subjects virtually all medical data 

(including hospital discharge letters) is recorded in primary care. Hence, misclassification of 

vaccination status, confounders, or mortality is unlikely. Furthermore, our study population 

comprised community-dwelling elderly, whereas the Swedish study included nursing home 

patients as well. Finally, in The Netherland, a country with no large-scale pneumococcal 

vaccination, confounding by pneumococcal vaccination will not materially affect our 

estimates of influenza vaccine effectiveness.    

In a study by Mangtani et al [17], in which data over ten influenza epidemic and 

summer periods was pooled, no effect of influenza vaccination was observed during summer 

periods, after adjustment for observed confounders (OR 1.01 95% CI 0.96 – 1.06). During 

influenza seasons influenza vaccination reduced the risk for death due to a respiratory 

disease by 12% (OR 0.88, 95%CI 0.84 – 0.92). This estimate is lower than our estimated 

30% reduction of all-cause mortality by influenza vaccination, possibly due to inclusion of 

nursing home residents in the study by Mangtani et al. Furthermore, in this British study 

effects of influenza vaccination might have been underestimated due to respiratory syncytial 

virus activity during the influenza season. In our study peak-influenza periods were largely 

separated from peak RSV-periods [2]. 

 



 

 

The observed odds ratio of the association between influenza vaccination and 

mortality risk during summer periods was lower than anticipated (i.e. lower than 1.0), likely 

due to healthy user bias. However, which unmeasured confounder yields this bias is unclear. 

Functional health status has been proposed as an important confounder. In contrast, a study 

in a population of Dutch elderly did not indicate functional health status as a confounder [25]. 

Another explanation might be that, even though influenza activity is hardly detected during 

summer, still a small amount of virus is present and active, thus resulting in a reduced 

mortality risk among vaccinated subjects. Since the number of reported isolates was low 

during these periods, this seems highly unlikely. A third explanation might be that functional 

health status deteriorates in the course of influenza illness during influenza epidemic periods 

and remains impaired even several months after the influenza epidemic has ended [26]. If 

this deterioration is prevented by influenza vaccination, lower mortality rates can be observed 

after epidemic periods, i.e. during summer periods. Finally, selection bias might have been 

the cause for the observed associations during summer. Only the subjects (either vaccinated 

or unvaccinated) that survive influenza epidemic periods contribute to the observations on 

summer periods. However, baseline characteristics for the vaccinated and non-vaccinated 

subjects from epidemic and summer periods were similar. Furthermore, the association 

between influenza vaccination and mortality adjusted for both measured and unmeasured 

confounding remained constant for different sets of observed confounders (horizontal lines in 

Figure 1), because adjustment for measured confounders has the same effect in both 

influenza epidemic and summer periods. Therefore, it is unrealistic to assume that a selected 

subgroup was included in summer periods and residual confounding or selection bias is 

therefore unlikely to have affected the estimated associations of influenza vaccine 

effectiveness materially.  

 

We used three methods to adjust for observed confounders, namely multivariable 

regression analysis, propensity score matching, and including propensity scores as a 

covariate in regression analysis. These methods produced similar results and were also 



 

 

approximately equally precise. These findings correspond to previous studies indicating that 

these methods give approximately the same results [10,27-29]. PS methods can be useful to 

reduce the number of covariates to be included in a multivariable model in case of limited 

sample size. Unfortunately, PS methods as well as multivariable regression analysis can only 

adjust for measured confounders. For interventions such as influenza vaccination, reference 

periods can be used to adjust for unmeasured confounding. In other cases possible effects of 

unmeasured confounding can be quantified by means of sensitivity analysis [6,30,31].  

In conclusion, non-randomized studies on influenza vaccine effectiveness are prone 

to confounding bias. Measured confounding can be adjusted by several methods. Using 

summer reference periods is a powerful method to take unmeasured confounding into 

account. After adjusting for both measured and unmeasured confounding influenza 

vaccination was associated with a 30% reduction in all-cause mortality during influenza 

epidemics among elderly persons and efforts should continue to vaccinate these high-risk 

persons.  

 

What is already known on this topic 

Since most evidence for influenza vaccine effectiveness in terms of reduction of mortality 

among elderly has been derived from non-randomized studies, selection of patients for 

influenza vaccination may have induced confounding bias, and hence vaccine effects might 

have been overestimated. Summer periods have been used as a reference period to quantify 

unmeasured confounding. 

 

What this study adds 

In the present study, in which data on eight influenza epidemic periods was pooled, 

unmeasured confounding taken into account by estimating influenza vaccine effectiveness 

during a summer reference period.  After adjustment for both measured and unmeasured 

confounding influenza vaccination was still associated with substantial mortality risk 

reduction.  
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Table 4. Association between influenza vaccination and mortality during influenza 

epidemic periods, adjusted for unmeasured confounding (as estimated during 

summer periods). 

 METHOD 

 Multivariable regression 

analysis 

PS matching* PS regression analysis* 

Sets of 

confounders† 

Odds ratio (95% CI) Odds ratio (95% CI) Odds ratio (95% CI) 

Model 1 0.70 (0.54 – 0.91) 0.73 (0.56 – 0.95) 0.71 (0.53 – 0.93) 

Model 2 0.68 (0.52 – 0.89) 0.71 (0.54 – 0.93) 0.69 (0.53 – 0.91) 

Model 3 0.69 (0.52 – 0.92) 0.69 (0.52 – 0.92) 0.70 (0.53 – 0.92) 

 

† model 1 includes observed demographics (age, sex), model 2 includes age, sex, and prior 

health care use (number of GP visits), model 3 includes age, sex, prior health care use, co-

morbidity status (cardiovascular and pulmonary co-morbidity, diabetes mellitus and 

malignancies), and medication use. Prior health care use was categorized in 4 categories (< 

6 GP visits, 6 – 10 visits, 11 – 15 visits, > 15 visits).  

* PS: Propensity Score.  



 

 

Figure 1. Associations between influenza vaccination and mortality risk after 

adjustment for confounders using different methods.  
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Legend Figure 1: 

For all panels: the epidemic effect estimates are based on the pooled influenza epidemic 

periods. The summer effect estimates are based on the pooled summer periods. The 

adjusted effect estimates are the influenza epidemic effect estimates adjusted for the amount 

of unmeasured confounding during summer periods.  

The first set of confounders includes age and sex, the second set additionally includes prior 

health care use (number of GP visits), and the third set also includes co-morbidity status and 

medication use. 


