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ABSTRACT: Rhinovirus (RV) infections are the major cause of asthma exacerbations, the major

cause of morbidity and mortality in asthma. MUC5AC is the major mucin produced by bronchial

epithelial cells. Whether RV infection upregulates MUC5AC in vivo is unknown and the molecular

mechanisms involved are incompletely understood.

We investigated RV induction of MUC5AC in vivo and in vitro to identify targets for development

of new therapies for asthma exacerbations.

RV infection increased MUC5AC release in normal and asthmatic volunteers experimentally

infected with RV-16, and in asthmatic, but not normal, subjects, this was related to virus load.

Bronchial epithelial cells were confirmed a source of MUC5AC in vivo. RV induction of MUC5AC in

bronchial epithelial cells in vitro occurred via nuclear factor-kB-dependent induction of matrix

metalloproteinase-mediated transforming growth factor-a release, thereby activating an epider-

mal growth factor receptor-dependent cascade culminating, via mitogen-activated protein kinase

activation, in specificity protein-1 transactivation of the MUC5AC promoter.

RV induction of MUC5AC may be an important mechanism in RV-induced asthma exacerbations

in vivo. Revealing the complex serial signalling cascade involved identifies targets for

development of pharmacologic intervention to treat mucus hypersecretion in RV-induced illness.

KEYWORDS: Asthma, chronic obstructive pulmonary disease, epidermal growth factor receptor,

MUC5AC, nuclear factor-kB, rhinovirus

A
cute exacerbations are the major cause of
morbidity, mortality and healthcare costs
in asthma. Exacerbations continue to

occur despite the availability of prophylactic
medication [1]. Therapies better able to reduce
the impact of acute exacerbations are needed.

Increased production and secretion of mucus is
associated with acute exacerbations, accelerated
decline in lung function and fatal asthma [2–4].
21 different mucin genes have been identified. Of
these, MUC5AC and MUC5B are the major
respiratory mucins produced by bronchial epi-
thelium and submucosal glands, respectively
[5, 6]. MUC5AC is the predominant mucin in
mild-to-moderate asthma [7] and increases in
both MUC5AC and MUC5B proteins have been
observed in fatal asthma [4]. MUC5AC is induced
in respiratory epithelial cells by a wide variety of

stimuli implicated in the pathogenesis of asthma,
including cytokines (interleukin (IL)-9 and IL-13),
neutrophil elastase, epidermal growth factor
receptor (EGFR) ligands and air pollutants [5];
however, the importance and mechanisms of
mucin induction in asthma exacerbations has not
been extensively investigated.

Rhinoviruses (RV) are associated with the majority
of asthma exacerbations [8]. Human experimental
RV infections have been used to investigate
exacerbation pathogenesis, with infection increas-
ing markers of eosinophil activation, IL-8 and
neutrophilia [9]. Only one study has investigated
RV induction of mucus secretion in humans [10];
however, this study did not evaluate specific
mucin gene expression or protein release, relate
virus load to mucin secretion or evaluate the
molecular signalling pathways involved.
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The primary target of RV is the bronchial epithelial cell [11].
One recent report investigated RV induction of MUC5AC in
tracheal epithelial cells and reported nuclear factor (NF)-kB,
mitogen-activated protein kinase kinase (MEK) and Src to be
involved [12]. In contrast, most other reports investigating
induction of MUC5AC by other stimuli in respiratory
epithelial cells implicate EGFR and downstream pathways
[13–15]. Therefore, the full mechanistic pathways involved in
RV induction of MUC5AC remain unclear.

We hypothesised that RV infection would induce MUC5AC
secretion in vivo and, having confirmed this, investigated the
detailed molecular regulation of RV induction of MUC5AC in
vitro. Our findings provide targets for the development of new
therapies for mucus hypersecretion in RV-induced illness.

MATERIALS AND METHODS

An experimental model for RV-induced acute exacerbations
of asthma
The clinical model, sampling and analysis are described in
detail previously [16]. Briefly, experimental infections were
induced in RV-16-seronegative, atopic asthmatic and normal
nonatopic adult subjects by inoculating a 10,000 tissue culture
infectious dose (TCID50) per mL dose on day 0 by nasal spray.
The study was approved by St Mary’s NHS Trust ethics
committee (London, UK) and all subjects gave informed
consent. Bronchoalveolar lavage (BAL) and bronchial biopsies
were taken at baseline ,2 weeks prior to infection, on day 4
after virus inoculation during acute infection and at convales-
cence (6 weeks after infection). BAL was assayed by ELISA for
MUC5AC protein as described later. Peak virus load during
acute infection was determined in daily nasal lavage samples
taken for 8 days following inoculation by quantitative (q)PCR
as described previously [16].

Immunostaining of MUC5AC in bronchial biopsies
Biopsies were fixed and set in paraffin wax. Sections were
stained with mouse anti-human MUC5AC (1:2000 (v/v); Santa
Cruz Biotechnology, Santa Cruz, CA, USA) and biotinylated
horse anti-mouse antibody (Ab) and counterstained with
haematoxylin.

Cell and viral culture
NCI-H292 cells were cultured in RPMI-1640 supplemented with
10% (v/v) fetal calf serum (Invitrogen, Paisley, UK). RV stocks
were grown in HeLa cells [17]. Viruses were titrated on HeLa
cells to ascertain their TCID50 [18]. The identities of all RVs were
confirmed by neutralisation using serotype-specific Ab (ATCC,
Manassas, VA, USA). Ultraviolet (UV) inactivation was per-
formed and filtered virus produced by passing RV stocks
through a 30 kDa membrane (Millipore, Watford, UK) [17].

Infection of cells with RV
NCI-H292 cells were cultured for 24 h before being serum-
starved for 24 h. Cells were infected at a multiplicity of
infection (MOI) of 1 (unless otherwise stated) for 1 h.

For inhibition studies, actinomycin D, AG1478, PD98059,
U0126, mithramycin A, CAPE, cycloheximide and GM6001
were purchased from Calbiochem (Darmstadt, Germany).
AS602868 was kindly provided by I. Adcock (Imperial

College London, London, UK). Cells were pre-treated for 1–
2 h before infection.

For the MUC5AC promoter studies, NCI-H292 cells were
transfected with MUC5AC promoter constructs [15], includ-
ing 0.4 mg MUC5AC-construct, 0.2 mg pCMVSPORT-bgal
(Invitrogen) and 0.4 mg poly(rI:C) or poly(dI:C) as control
(Sigma–Aldrich, Poole, UK). Luciferase levels were assessed
and normalised to b-galactosidase levels (Promega,
Southampton, UK) [15].

ELISA to evaluate MUC5AC protein
NCI-H292 culture supernatants and diluted BAL (1:100 (v/v)
in carbonate-bicarbonate buffer) were assayed for MUC5AC
protein by ELISA [15].

RNA extraction, reverse transcription and real-time qPCR
RNA extraction, reverse transcription and qPCR analysis of
MUC5AC gene expression was performed as previously
described [15].

Site-directed mutagenesis of MUC5AC -324 promoter
construct
Site-directed mutagenesis of the NF-kB and interferon regula-
tory factor (IRF) transcription factor binding sites was carried
out as previously described [15]. The mutations introduced
were: NF-kB, GGGGAGGACCCCT to TTTTAGGACCCCT;
IRF, TCACTTCTGG to TCACGGGACC (mutated bases under-
scored).

Western blotting for EGFR phosphorylation
Cells were infected with RV-16, or transfected with 0.4 mg
poly(rI:C) or poly(dI:C). Cells were harvested, and proteins
resolved and analysed by immunoblotting with mouse anti-
phospho-EGFR or sheep anti-EGFR (1:1000 (v/v); Upstate,
Watford, UK) and horseradish peroxidase-conjugated second-
ary antibodies.

ELISA to quantify extracellular signal-regulated kinases 1/2
phosphorylation
At 3, 6 and 24 h post-infection, proteins were extracted using
Cell Extraction Buffer (Biosource, Paisley, UK) including
protease inhibitors (Pierce Biotechnology, Cramlington, UK).
Total and phospho-specific extracellular signal-regulated kinase
(ERK)1/2 were quantified using specific ELISAs (Biosource).

ELISA to quantify transforming growth factor-a release
At 8 h post-infection, supernatants were harvested and assayed
for transforming growth factor (TGF)-a release using a human
TGF-a Quantikine ELISA (R&D Systems, Abingdon, UK).

Confocal microscopy for RV infection and p65 translocation
At 6 h post-infection, cells were fixed, permeabilised and
incubated with a rabbit anti-RV 3C protease Ab (1:200 (v/v);
provided by J. Gern, University of Wisconsin, Madison, WI,
USA [19]) and mouse anti-p65 Ab (1:500 (v/v); Santa Cruz
Biotechnology). These were detected using goat anti-mouse
AlexaFlour546 (1:200 (v/v)) and anti-rabbit AlexaFlour488
(1:200 (v/v)) Ab (Invitrogen). Slides were counterstained with
49,6-diamidino-2-phenylindole (DAPI).
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Statistical analysis
Data are presented as mean¡SEM. All data were analysed
using ANOVA and Bonferroni’s multiple-comparison, post hoc
test. Correlations between MUC5AC concentrations and virus
load were examined using Spearman’s rank correlation. Data
were accepted as significantly different when p,0.05.

RESULTS
RV induction of MUC5AC protein secretion in vivo and
relation to virus load
Nine atopic asthmatic and 15 nonatopic normal volunteers
were experimentally infected with RV-16 as described pre-
viously [16]. MUC5AC protein was quantified in BAL

harvested prior to (baseline), and 4 days and 6 weeks after
infection. In addition, nasal lavage samples were taken to
determine peak virus load during the infection [16].

RV-infection led to a significant increase in BAL MUC5AC protein
between the baseline and acute infection phases (p50.033), which
was resolved by 6 weeks (p50.002; fig. 1a). Asthmatic patients
had greater mean levels of MUC5AC BAL protein at each time
point compared with normal subjects; however, these differences
were not statistically significant (fig. 1b).

In asthmatic patients alone, MUC5AC levels in BAL were
highly correlated with virus load (r50.750, p50.02; fig. 1c),
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FIGURE 1. MUC5AC is induced by rhinovirus (RV) in vivo, correlating with virus load and produced by bronchial epithelial cells. Bronchoalveolar lavage (BAL) and nasal

lavage were taken from 15 normal and nine asthmatic subjects at baseline, and 4 days and 6 weeks post-infection. MUC5AC was quantified in the BAL by ELISA. RV load was

quantified by quantitative PCR in nasal lavage. a) Quantification of MUC5AC protein secreted into BAL for all patients. Boxes represent median and interquartile range, and

whiskers respresent 95% CI. #: outliers (1.5–2-times the interquartile range); $: extremes (.2-times the interquartile range). #: p50.033; ": p50.002. b) Quantification of

MUC5AC protein secreted into BAL for normal and asthmatic patients. +: p50.32; 1: p50.44; e: p50.26; ##: p50.14; "": p50.047; ++: p50.1; 11: p50.066. c) Correlation

between peak virus load and BAL MUC5AC at day 4 in asthmatic ($; p50.02, r50.750) and normal (#; p50.379, r50.245) subjects. —: correlation for asthmatic subjects. d)

Bronchial biopsies were taken at baseline and 4 days post-infection. Biopsies were stained for MUC5AC (brown) and counterstained with haematoxylin (blue). Scale

bars550 mm. Representative immunohistochemistry images from a normal subject at 1) baseline and 2) day 4, and at 3) baseline and 4) day 4 in an asthmatic patient.
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Figure 2. Please see following page for legend.
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indicating induction was related to severity of infection. No
significant relationship was observed for normal subjects.

Bronchial epithelial cells are a source of MUC5AC in vivo

Bronchial biopsies taken at baseline and 4 days post-infection
[16] were stained for MUC5AC protein expression. In both
normal (fig. 1d, upper panels) and asthmatic (fig. 1d, lower
panels) subjects, epithelial cells were identified as MUC5AC-
producing cells. Quantitative analysis could not be performed
due to loss of epithelium in many of the asthmatic subjects
and, therefore, while we were able to identify RV-induced
release of MUC5AC (figs 1a and b) we were unable to
definitively demonstrate an increase in production. However,
these data do demonstrate that bronchial epithelial cells are a
source of MUC5AC protein in the human lung in vivo.

RV stimulates de novo MUC5AC synthesis and secretion in
respiratory epithelial cells in vitro
Having found RV induction of MUC5AC in vivo, we then
investigated mechanisms in vitro. We infected the bronchial
epithelial cell line NCI-H292 with RV-16 and observed a time-
dependent increase in MUC5AC protein compared to un-
infected control cells (fig. 2a). This induction was dose-
dependent, with significant induction of MUC5AC protein
by RV-16 at an MOI of 1 and 0.5, but not 0.1 (fig. 2b).

To determine whether RV increased MUC5AC transcription,
we assessed MUC5AC mRNA expression. This was signifi-
cantly increased 8–48 h post-infection, peaking at 24 h, but had
returned to baseline by 72 h (fig. 2c). Induction of mRNA
expression was dose-dependent (fig. 2d).

As the RV family contains both major and minor serotypes
(which use different receptors to infect), we demonstrated that
RV-16, RV-9 (both major group) and RV-1B (minor group)
significantly increased MUC5AC expression (fig. 2e), indicat-
ing that induction was neither serotype- nor receptor-
restricted. In addition, we confirmed induction was virus-
specific, as virus-free inocula and UV-inactivated RV-16 failed
to significantly induce MUC5AC expression (fig. 2e).

We next investigated whether the increased MUC5AC expres-
sion was due to increased de novo transcription, using
actinomycin D to inhibit new mRNA synthesis and suppress
induction of MUC5AC mRNA expression (fig. 2f), confirming
increased expression was due to increased transcription.
Additionally, we monitored MUC5AC mRNA over time and
observed no difference in degradation rates in the presence of
RV-16 (fig. 2g), confirming that RV-16 infection did not alter
MUC5AC mRNA degradation.

FIGURE 2. Rhinovirus (RV) infection leads to time-, dose- and replication-dependent increases in de novo MUC5AC expression. a) Cells were infected with RV-16 and

MUC5AC protein quantified by ELISA at 8, 24, 48 and 72 h post-infection (n55). $: RV-16; #: control. b) Cells were infected with RV-16 at multiplicity of infection (MOI) of

0.1, 0.5 and 1, or equivalent volume of filtered RV-16, and MUC5AC protein quantified by ELISA at 24 h post-infection (n53). c) Cells were infected as in a) and MUC5AC

mRNA harvested and quantified by quantitative (q)PCR (n54). $: RV-16; #: control. d) Cells were infected as in b), and MUC5AC mRNA was harvested and quantified by

qPCR 8 h post-infection (n54). e) Cells were infected with RV-16, RV-1B, RV-9, ultraviolet-inactivated RV-16 or an equivalent volume of filtered RV-16, and MUC5AC mRNA

was quantified by qPCR 8 h post-infection (n55). *: p,0.05 comapred to uninfected control cells; **: p,0.01 compared to uninfected control cells; ***: p,0.001 compared

to uninfected control cells; #: p,0.001 compared to RV-16-infected cells. f) Cells were pre-treated with actinomycin D at doses indicated and infected with RV-16. MUC5AC

mRNA was quantified by qPCR 8 h post-infection (n54). &: RV-16; h: medium. g) Cells were infected with RV-16 and treated with 100 nM actinomycin D 16 h later. MUC5AC

mRNA was harvested and quantified by qPCR at 0, 4, 8 and 24 h post-actinomycin D (n54). Data are presented as mean¡SEM. $: RV-16; #: control. **: p,0.01 compared

to time 0; ***: p,0.001 compared to time 0.

50000a)

40000

30000

20000

10000

0

M
U

C
5A

C
 m

R
N

A 
co

py
 n

um
be

r

0

4 6 8 12

AG1478 nM 1 10 100

MediumRV-16

***

***

*

100 0

pEGFR

EGFR

b)

4 6 8 12 Time h

pEGFR

EGFR

Time h1.5 2 3 1.5 2 3

Mediumpoly(rI:C)
c)

FIGURE 3. Rhinovirus (RV) induction of MUC5AC requires activation of

epidermal growth factor receptor (EGFR). a) Cells were pre-treated with AG1478 at

doses indicated and infected with RV-16. MUC5AC mRNA was harvested and

quantified by quantitative (q)PCR 8 h post-infection (n55). Data are presented as

mean¡SEM. &: RV-16; h: uninfected. *: p,0.05 compared to control infected cells;

***: p,0.001 compared to control infected cells. b) Cells were infected with RV-16

and proteins harvested 4, 6, 8 and 12 h post-infection. Total EGFR and phospho-

specific (p)EGFR were detected by Western blotting. c) Cells were stimulated with

poly(rI:C) or poly(dI:C) as control, and proteins harvested 1.5, 2 and 3 h later. Total

EGFR and pEGFR was detected by Western blotting. Western blots are

representative of three experiments.

C.A. HEWSON ET AL. CELL AND ANIMAL STUDIES

c
EUROPEAN RESPIRATORY JOURNAL VOLUME 36 NUMBER 6 1429



40000a)

30000

20000

10000

0

M
U

C
5A

C
 m

R
N

A 
co

py
 n

um
be

r

0PD98059 µM 2 20 200

***

***

*

200 0

b)

0U0126 µM 0.06 0.6 6

***

***

***

6 0

50000d)

40000

20000

30000

10000

0

M
U

C
5A

C
 m

R
N

A 
co

py
 n

um
be

r

0Mit. A µM 0.01 0.1 1

***

**

1 0

8

7

6

5

c)

4

3

2

1

0

U
 p

E
R

K
 p

er
 m

g 
E

R
K

3 6
Time h

******

24

*

e)

luc

luc

luc

luc -192

-63

-324

-689

-1330

luc

C
A

C
C

C

S
p1(3)

S
p1(2)

S
p1(1)

N
F-κB

N
F-κB

IR
E

A
P

-2

P
E

A
3

A
P

-2

G
R

E

-1330

-689

f)

-324

-192

-63

Control

C
on

st
ru

ct

10 2 3 4
MUC5AC promoter activation

fold induction over control

***
#

5 6

-192

Sp1Δ1

g)

Sp1Δ2

Sp1Δ3

Sp1Δ1/2/3

Control

10 2 3 4 5
MUC5AC promoter activation

fold induction over control

***

*

*

*

#

76 8

CELL AND ANIMAL STUDIES C.A. HEWSON ET AL.

1430 VOLUME 36 NUMBER 6 EUROPEAN RESPIRATORY JOURNAL



RV induces MUC5AC expression via an EGFR–MEK/ERK–
specificity protein-1 signalling cascade
Previous studies report EGFR activation is required for
induction of MUC5AC expression by a wide range of
mediators [13–15]. Therefore, we investigated this for RV-
induced MUC5AC expression.

AG1478, a specific inhibitor of EGFR phosphorylation and
activation, resulted in dose-dependent and complete inhibition
of MUC5AC expression (fig. 3a). We next confirmed that RV
infection activated EGFR using phospho-specific Western
blotting (fig. 3b) and also confirmed that poly(rI:C), a
frequently used model of virus infection, activated EGFR in
the same manner (fig. 3c).

We then investigated the signalling pathways downstream of
EGFR. PD98059, an inhibitor of MEK activation, led to a dose-
responsive and complete inhibition of MUC5AC mRNA
expression (fig. 4a), as did a second MEK-specific inhibitor,
U0126 (fig. 4b). We confirmed that RV infection induced ERK
phosphorylation from 3–24 h (fig. 4c) and that mithramycin A,
an inhibitor of specificity protein (Sp)1 binding, resulted in a
dose-responsive inhibition of MUC5AC expression (fig. 4d).
To confirm the requirement for Sp1, we transfected NCI-H292
cells with MUC5AC promoter–luciferase constructs (fig. 4e)
[15] and observed that serial truncation of the promoter from
-1330 to -192 bp did not alter induction of the MUC5AC
promoter by poly(rI:C) (fig. 4f); however, when the promoter
was further truncated to the -63 bp fragment, thus removing

FIGURE 4. Rhinovirus (RV) induction of MUC5AC requires mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and specificity

protein (Sp)1 transactivation of the MUC5AC promoter. a) Cells were pre-treated with PD98059 at doses indicated and infected with RV-16. MUC5AC mRNA was quantified by

quantitative (q)PCR 8 h post-infection (n54). *: p,0.05 compared to uninhibited infected cells; ***: p,0.001 compared to uninhibited infected cells. b) As a), but cells pre-

treated with U0126 as indicated (n54). ***: p,0.001 compared to uninhibited infected cells. c) Cells were infected with RV-16 and total ERK or phospho-ERK (pERK)

quantified by ELISA at 3, 6 and 24 h post-infection (n54). *: p,0.05 compared to uninfected control cells; ***: p,0.001 compared to uninfected control cells. d) As a) and

b) , bu t ce l l s p re- t rea ted wi th mi th ramyc in A (Mi t . A ) as ind ica ted (n55) . ** : p,0.01 compared to un inh ib i ted in fec ted ce l l s ;

***: p,0.001 compared to uninhibited infected cells. e) Map of cloned MUC5AC promoter, indicating the five truncations and putative transcription factor binding sites.

GRE: granulocyte colony-stimulating factor-responsive element; AP-2: activating protein-2; NF-kB: nuclear factor-kB; IRE: interferon-responsive element. f) Cells were

transfected with the five constructs, alongside poly(rI:C) or poly(dI:C) as control. Luciferase (luc) expression was quantified 48 h post-infection (n55). ***: p,0.001

compared to -1330 construct. g) Cells were transfected with -192 construct containing mutated Sp1 binding sites alongside poly(rI:C), or poly(dI:C) as control. Luc expression

was quantified 48 h post-infection (n55). *: p,0.05 compared to -192 construct; ***: p,0.001 -192 constructs; #: not significant. Data are presented as mean¡SEM. &: RV-16;

h: uninfected.
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were infected with RV-16 before RV 3C protease and p65 were detected and visualised by confocal microscopy 6 h post-infection. Arrows indicate co-localised 3C protease

and p65 nuclear translocation. Confocal image is representative of three experiments. Scale bars512.5 mm.
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the Sp1 sites, induction was abolished. Finally, we mutated the
three Sp1 sites within the -192 bp promoter fragment,
confirming that all three sites were active, as on deletion of
all Sp1 sites there was no longer significant induction (fig. 4g).

These data demonstrate that RV induction of MUC5AC
expression requires activation of the EGFR, followed by
activation of MEK and ERK, culminating in transactivation of
the MUC5AC promoter by Sp1 binding to three specific sites
within the proximal promoter.

RV induction of MUC5AC requires NF-kB mediated
induction of TGF-a release upstream of EGFR activation
With the identification that EGFR was required and knowing
that EGFR ligands are cleaved from precursors by matrix
metalloproteinases (MMP) that may be induced by NF-kB,
which is implicated in RV-induced inflammation [17], we next
investigated the role NF-kB in RV induction of MUC5AC.

Two pharmacologically distinct inhibitors of NF-kB activation,
caffeic acid phenethyl ester (CAPE), an inhibitor of p65 nuclear
translocation (fig. 5a) and AS602868, an inhibitor of inhibitor of
kB kinase (IKK)-b (fig. 5b) resulted in a dose-responsive
inhibition of MUC5AC induction. To confirm that RV infection
caused activation of NF-kB, using confocal microscopy, we
stained cells for RV 3C protease, a nonstructural protein
expressed only in actively infected cells [19], the p65 subunit of
NF-kB and DAPI. We observed NF-kB nuclear translocation
(red) only in cells infected with RV (green), while uninfected
cells retained p65 in their cytosol (fig. 5c).

Virus infections induce both NF-kB and interferon regulatory
factors and the MUC5AC promoter contained binding sites for
both (fig. 4e). Site-directed mutagenesis of these sites did not
alter promoter activity of the -324 construct (fig. 6a).

Having demonstrated that NF-kB did not transactivate the
MUC5AC promoter directly, we investigated the role of NF-kB

4

3

2

1

5

0
AS602869 - -+

#

**
*

TG
F-
α

 p
g.

m
L-1

-324ΔIRF

-324ΔNFR_κB

Control

-324

C
on

st
ru

ct

MUC5AC promoter activation
fold induction over control

0 42 6 8

10000

5000

15000

0

M
U

C
5A

C
 m

R
N

A
co

py
 n

um
be

r

M
U

C
5A

C
 m

R
N

A
co

py
 n

um
be

r

Cycloheximide mg.mL-1
0.0 5.00.5 50.0

¶

***

**

***

#

#

***

a) b)

c)

25000

20000

15000

10000

5000

30000

0
GM6001 - -+

#

***
***

d)

FIGURE 6. Rhinovirus (RV) induction of MUC5AC requires a nuclear factor (NF)-kB-dependent, matrix metalloprotease-mediated release of transforming growth factor

(TGF)-a. a) Cells were transfected with wild type or -324 constructs containing mutated NF-kB and interferon regulatory factor (IRF) binding sites, alongside poly(rI:C), or

poly(dI:C) as control. Luciferase expression was quantified 48 h post-infection (n54). &: poly(rI:C); h: control. b) Cells were pre-treated with 1610-6 M AS602868 and

infected with RV-16. TGF-a release was quantified 6 h post-infection (n53). *: p,0.05 compared to control cells; **: p,0.01 compared to control cells; #: not signficant. c)

Cells were pre-treated with cycloheximide at doses indicated and infected with RV-16. MUC5AC mRNA was quantified 8 h post-infection (n53). **: p,0.01 comparing

infected and control cells at each concentration of cycloheximide; ***: p,0.001 compared to control infected cells; #: not significant; ": p,0.001 comparing infected and

control cells at each concentration of cycloheximide. d) Cells were pre-treated with 4610-5 M GM6001 and infected with RV-16. MUC5AC mRNA was quantified 8 h post-

infection (n53). ***: p,0.001 compared to control cells; #: not significant. Data are presented as mean¡SEM. &: RV-16; h: uninfected.

CELL AND ANIMAL STUDIES C.A. HEWSON ET AL.

1432 VOLUME 36 NUMBER 6 EUROPEAN RESPIRATORY JOURNAL



in activation of EGFR ligands. Pro-transforming growth-factor
(TGF)-a cleavage, activation and release from the cell surface
has previously been demonstrated to be upstream of MUC5AC
expression [20]. Therefore, we investigated whether RV
infection induced the release of TGF-a and whether this was
NF-kB-dependent using AS602868. Infection of NCI-H292 cells
with RV-16 resulted in significant induction of TGF-a release
into supernatants, which was significantly blocked by NF-kB
inhibition (fig. 6b).

Next, we sought to confirm that RV induction of MUC5AC
expression required the synthesis of an intermediate protein.
Treatment of cells with cycloheximide to prevent de novo
protein synthesis significantly inhibited MUC5AC gene

expression (fig. 6c), confirming requirement of a newly
synthesised intermediate protein in this process.

As MMPs are known to be induced by NF-kB and to cleave pro-
TGF-a to active TGF-a [21], we investigated the involvement of
MMPs using the inhibitor GM6001 (fig. 6d) and observed that
GM6001 significantly inhibited RV induction of MUC5AC mRNA.

These data demonstrate that RV induction of MUC5AC
expression requires NF-kB activation in addition to the
EGFR–MEK/ERK–Sp1 pathway. However, NF-kB does not
directly transactivate the MUC5AC promoter, but activates
expression and translation of intermediate MMPs that induce
TGF-a release upstream of EGFR activation.
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RV induction of MUC5AC protein requires the same key
signalling events
Finally, having defined in detail the mechanisms involved in
RV induced MUC5AC gene expression, we wished to confirm
our key findings for MUC5AC protein release.

We repeated our experiments using the inhibitor of NF-kB
(CAPE), the inhibitor of MMP (GM6001), the inhibitor of the
EGFR (AG1478) and the inhibitors of MEK activation (PD98059
and U0126), and demonstrated a statistically significant
reduction in RV-induced MUC5AC protein release with all
inhibitors (fig. 7).

These data confirmed the signalling pathway of RV induction
of NF-kB to activate MMPs and a subsequent EGFR–MEK/
ERK pathway leading to MUC5AC synthesis and secretion.

DISCUSSION
RVs are the major cause of asthma exacerbations and mucus
secretion is important in exacerbation pathogenesis; however,
RV induction of MUC5AC has not been demonstrated in
humans and the molecular mechanisms regulating RV induc-
tion of MUC5AC are poorly understood.

We have demonstrated that MUC5AC release into BAL is
increased by RV infection in vivo and, in asthmatic subjects
only, BAL MUC5AC levels correlated with peak virus load. It
is likely that this correlation is related to the impaired innate
antiviral immune response to RV infection recently reported in
bronchial epithelial cells in asthma [11].

We next confirmed bronchial epithelial cells as a source of
MUC5AC in vivo and observed that RV infection stimulated de
novo MUC5AC gene expression and protein secretion from
respiratory epithelial cells in vitro. This was RV serotype- and
receptor-independent and replication-dependent. Next, we
identified activation of the EGFR–MEK/ERK signalling path-
way, culminating in Sp1 binding the proximal MUC5AC
promoter. In addition, we identified a second signalling cascade
upstream of EGFR activation: RV induction of MUC5AC was
NF-kB-dependent; however, NF-kB did not directly transacti-
vate the promoter. Instead, NF-kB was required for MMP-
dependent release of the EGFR ligand TGF-a [14], thus
completing a complex signalling cascade (fig. 8).

A recent publication has described RV-14 mediated upregula-
tion of MUC5AC via Src/MEK/NF-kB [12]. However, those
authors overlooked the role of the EGFR and implied that NF-kB
induced MUC5AC release directly. We have demonstrated that
NF-kB is involved indirectly via increasing transcription of an
intermediate MMP. Another recent publication also identified
involvement of the EGFR–ERK pathway in RV/double-
stranded RNA induction of MUC5AC. In that case, initiated
by Toll-like receptor (TLR)-3 recognition of the poly(rI:C) used
[22]. While that paper did not fully characterise the complete
pathway described here and did not identify the induction of an
intermediate MMP, their identification of upstream TLR-3
signalling increases the range of potential therapeutic targets
for development of new approaches to therapy.

This combination of two serially linked signalling cascades, both
necessary for induction of MUC5AC, is a novel pathway for
mucin induction, so far unique for RV. However, it is possible
that studies investigating other stimuli may have overlooked

this pathway. We have previously reported that for phorbol 12-
myristate 13-acetate (PMA)-induced MUC5AC, an EGFR path-
way culminating in Sp1 transactivation of the promoter was
required [15] and others have highlighted Sp1 transactivation of
MUC2 and MUC5AC promoters [23]. We noted at that time that
PMA induction of MUC2 in colonic epithelium was also
reported to involve EGFR-mediated signalling pathways but,
in contrast, culminated in NF-kB activation of the promoter [24].
However, those authors did not demonstrate any effect on
MUC2 promoter activity when the putative NF-kB site was
removed. With our demonstration that both NF-kB and Sp1 are
required in the complex RV induction of MUC5AC, it is possible
that both are also required for induction of MUC2 and
MUC5AC by other stimuli. There are several other reports
demonstrating Sp1 mediates activation of MUC2 in intestinal
[25] and respiratory epithelium [26]; and there are, equally,
several reports of a requirement for NF-kB in MUC2 [27] as well
as MUC5AC expression [28]. With the extensive literature
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FIGURE 8. Molecular mechanisms of rhinovirus (RV) induction of MUC5AC

synthesis and secretion. RV infects respiratory epithelial cells causing activation

and nuclear translocation of nuclear factor (NF)-kB. This causes transcription and

translation of matrix metalloproteases (MMPs) that cleave pro-transforming growth

factor (TGF)-a and active TGF-a is released from the cell surface. The active TGF-a

then binds to and activates the epidermal growth factor receptor (EGFR) present on

the surface epithelium in a para/autocrine mechanism. Phosphorylation of the

intracellular domain of EGFR activates a cellular signalling cascade including

mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated
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establishing the importance of the EGFR pathway (which
culminates in Sp1 transactivation of MUC2 and MUC5AC
promoters) [13, 14], it is likely that these studies identifying a
requirement for NF-kB may be highlighting this pre-EGFR
signalling cascade we have identified with RV. This possibility
should, therefore, be considered for other secretagogues.

Our findings also have important implications for acute
exacerbations of other illnesses, as RVs are reported to be a
major cause of acute exacerbations of chronic obstructive
pulmonary disease [29] and other respiratory illnesses [30] in
which mucus hypersecretion is likely to play an important role.

In conclusion, this study has identified that RV infection
induces MUC5AC protein release in vivo and the key
molecules involved in a complex serial induction pathway.
These data provide targets for the development of novel
interventions against MUC5AC hypersecretion in RV-induced
exacerbations of airway diseases.
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