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ABSTRACT: Estimates of influenza vaccine effectiveness have mostly been derived from

nonrandomised studies and therefore are potentially confounded. The aim of the current study

was to estimate influenza vaccine effectiveness in preventing mortality among the elderly, taking

both measured and unmeasured confounding into account.

Information on patients aged o65 yrs from the computerised Utrecht General Practitioner

database on eight influenza epidemic periods and summer periods was pooled to estimate

influenza vaccine effectiveness in preventing mortality. Summer periods (during which no effect

of vaccination was expected) were used as a reference to control for unmeasured confounding in

epidemic periods.

After adjustment for measured confounders using multivariable regression analysis, propensity

score matching and propensity score regression analysis, influenza vaccination reduced mortality

risk (odds ratios (ORs) 0.58 (95% confidence interval (CI) 0.46–0.72), 0.56 (95% CI 0.44–0.71) and

0.56 (95% CI 0.45–0.69), respectively). After additional adjustment for unmeasured confounding

(as observed during summer periods), the association between influenza vaccination and

mortality risk decreased (OR 0.69 (95% CI 0.52–0.92)).

We conclude that after state-of-the-art adjustment for typical confounders such as age, sex and

comorbidity status, unmeasured confounding still biased estimates of influenza vaccine

effectiveness. After taking unmeasured confounding into account, influenza vaccination is still

associated with substantial reduction in mortality risk.

KEYWORDS: Bias, confounding, confounding factors, epidemiological methods,

influenza vaccines

A
nnually, influenza epidemics are asso-
ciated with high mortality rates, notably
among elderly persons [1, 2]. Since the

introduction of influenza vaccines, only one
randomised double-blind trial has been con-
ducted among (younger) elderly persons, and
influenza infection was halved in the vaccine
group compared with the placebo group [3].
Large-scale trials evaluating more serious out-
comes such as mortality are not available, in part
because of the large sample size needed, and also
due to ethical constraints. Instead, several non-
randomised observational studies have set out to
estimate the effects of influenza vaccination on
serious outcomes among elderly persons [4, 5]. In
2007, results were published of a 10-yr United
States Health Maintenance Organisation data-
pooling project, including more observations
than available in all meta-analyses, and findings
of substantial mortality reduction of the same
magnitude as in previous studies were observed
[6]. However, recently there has been a debate
regarding the validity of findings from such

nonrandomised studies [7, 8]. The main concern
is that selection of patients for influenza vaccina-
tion in daily practice has resulted in incompar-
able groups of vaccinated and unvaccinated
subjects, which may have led to considerable
confounding bias [9, 10].

Several methods have been proposed in order to
adjust for measured confounders, but unmea-
sured confounders are likely to result in residual
bias. For example, functional health status, which
is not routinely collected in medical databases, is
an important potential confounder [11, 12].
NICHOL et al. [6] quantified the potential effect
of such an unmeasured confounder using sensi-
tivity analysis and showed that only in unlikely
confounder scenarios was influenza vaccination
not associated with mortality reduction.

Alternatively, the use of reference periods has
also been proposed to quantify unmeasured
confounding, since vaccine effectiveness can be
considered known during these periods [7]. For
example, in pre-influenza [7, 13, 14], or summer
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periods [6, 15, 16], during which influenza virus activity is low
or virtually absent, vaccine effectiveness is expected to be low
or absent as well. Pre-influenza (or peri-influenza) epidemic
periods, however, cannot be considered first-choice reference
periods, since influenza virus activity is low (not absent) [2],
and expected effects are, therefore, unclear. Hence, the use of
summer periods without influenza activity has been suggested
as a valid reference period to quantify unmeasured confound-
ing [15, 17]. The present study assessed mortality risk after
influenza vaccination among community-dwelling elderly
persons in a retrospective cohort study in the Netherlands
during eight influenza seasons, taking both measured and
unmeasured confounding into account.

METHODS

Study population
Until 2007, the Dutch immunisation guideline on influenza
vaccination recommended vaccination for specific patient
groups with high-risk medical conditions and for all persons
aged o65 yrs. In the Netherlands, the uptake of influenza
vaccination among elderly persons has been high, with levels
well over 70% after 1995 [5, 18]. The computerised medical
database of the Netherlands University Medical Center
Utrecht, General Practitioner (GP) Research Network, includes
cumulative information on ,60,000 patients enlisted with 33
GPs. The database complies with Dutch guidelines on the use
of medical data for research purposes and has been shown to
be valid in influenza vaccination studies [5, 19]. Diagnoses are
coded according to the International Classification of Primary
Care (ICPC) coding system.

For the present study, we obtained clinical information on all
elderly persons aged o65 yrs over eight influenza epidemic
periods (1995/1996–2002/2003). In accordance with previous
studies, influenza epidemic periods were defined as periods of
at least two consecutive weeks in which each week accounted
for at least 5% of the season’s total number of influenza isolates
[2, 20]. The number of isolates was in accordance with a
laboratory-based surveillance conducted by the Weekly
Sentinel System of the Dutch Working Group on Clinical
Virology in the Netherlands. Importantly, peak influenza
periods were largely separated from peak respiratory syncytial
virus (RSV) periods [2]. Furthermore, similar information was
obtained during eight consecutive summer periods in which
influenza isolates were infrequent or absent (1996–2003).
Summer periods were defined as periods from week 20 until
week 40 of each year. This period was selected as a reference
period, for which we expected vaccination to provide no
benefit, since influenza is not circulating during this summer
period [6, 7, 17]. In agreement with other observational studies,
we collected extensive information on exposure to seasonal
influenza vaccination and on potential confounders, such as
age, sex, comorbidity and prior healthcare consumption for
each observation period. Vaccination status was ascertained by
registration of the ICPC code R44.1. Earlier studies have shown
a high agreement between the presence of this code in the
medical database and vaccination status (k593%) [5].
Comorbidity status was based on registration of ICPC codes
during the 12 months preceding each year’s influenza epi-
demic period: cardiovascular comorbidity (acute myocardial
infarction (code K75), congestive heart failure (K77), other

cardiovascular diseases (K74, K76, K78–80, K82–84) or stroke
(K90)); pulmonary comorbidity (lung cancer (R84, R85),
asthma or chronic obstructive pulmonary disease (R91, R95,
R96)); diabetes (T90); and malignancies (B72, B73, B74, D74–77,
S77, T71, U75–77, X75–77, Y77). Furthermore, healthcare
consumption (number of GP visits) and medication use in
the year preceding each influenza epidemic period were
recorded [5].

Sample size
Based on an earlier study, we expected a vaccination rate of
70% [18] and a mortality rate of 1% during influenza epidemic
periods [2]. To detect a relative mortality risk reduction of at
least 30%, with a statistical power of 80% and a two-tailed a-
level of 0.05, the minimum required sample size was 51,000
periods of observation.

Methods to adjust for measured confounders
Three hierarchical sets of confounders were defined. The first
set included only demographics (age and sex). The second set
added information on prior healthcare use (number of GP
visits) to the set of demographics. The third set added
information on comorbidity status (cardiovascular and pul-
monary comorbidity, diabetes mellitus and malignancies) and
prior medication use. We used three methods (propensity
score matching, propensity score regression analysis and
multivariable regression analysis) to adjust for the measured
confounders, and each method was used on each of the three
sets of confounders [8]. All methods were used on data from
influenza epidemic periods as well as summer periods.

Propensity score matching
Propensity scores estimate the probability of being exposed,
independently of outcome status [21, 22]. Using multivariable
logistic regression modelling, propensity scores of being
vaccinated were calculated, including potential confounders
as predictors in the model. We developed different models for
each set of confounders. The main aim of propensity score
analysis was to balance confounder distributions between
groups of vaccinated and unvaccinated subjects for different
strata of the propensity score (ranging from 0 to 1). Propensity
scores were stratified in quintiles and subjects were pair-
matched on vaccination status within these quintiles. In the
matched dataset, the effects were estimated using conditional
logistic regression analysis. This procedure of matching and
analysis was repeated 1,000 times and the resulting distribu-
tion of effect estimates provided an overall effect estimate
(mean) and 95% confidence intervals (CIs).

Propensity score regression analysis
Similarly to the propensity score matching procedure, pro-
pensity scores were calculated for the different sets of
confounders. These scores were included as a single, contin-
uous covariate in a logistic regression model estimating the
association between influenza vaccination and mortality.

Multivariable regression analysis
Multivariable logistic regression analysis was used to calculate
effect estimates. Inclusion of potential confounders in the
model was based on univariate associations with both
vaccination status and mortality. Three hierarchical models
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were constructed, based on the aforementioned sets of
confounders.

Subjects could contribute more periods of observation to the
study. These periods were assumed to be independent, when
applying propensity score methods and logistic regression
analysis. Subsequent influenza epidemic periods within one
subject might, however, not be independent. This was verified
by means of generalised estimating equations (GEE) techni-
ques, which can be considered longitudinal logistic regression
analysis [23], in which the influence of potential within-person
dependency was assessed.

With GEE, potential within-person dependency is taken into
account by assuming a correlation structure for the observa-
tions within persons. We used the least restrictive correlation
structure, i.e. the unstructured correlation structure [23].
Clearly, if the results of multivariable logistic regression
analysis and GEE analysis are similar, within-subject depen-
dency does not affect estimates and the assumption holds that
different observations within the same subject can be con-
sidered independent.

Method to adjust for unmeasured confounders
For each method and each set of confounders an effect estimate
was calculated in influenza epidemic periods and in summer
periods. The latter was used to adjust the effect estimate
obtained during the influenza periods for unobserved con-
founding. During summer periods no benefit of vaccination
was expected with an expected odds ratio (OR), as a measure
of association, of 1.0 [6, 7]. Therefore, deviations of the
associations during summer periods from the expected OR
(1.0) were used to quantify unmeasured confounding bias.
Effect estimates calculated for influenza epidemic periods were
adjusted for the amount of unobserved confounding measured
during summer periods as follows:

ORadj5ORepidemic/ORsummer5exp(bepidemic-bsummer)

in which b indicates the regression coefficient for influenza
vaccination [24]. To estimate a 95% CI of this ratio of ORs, we
sampled 100,000 times from the distributions of effect
estimates for epidemic and summer periods. By each time
taking the ratio of the two sampled numbers, we arrived at a
distribution based on 100,000 ratios. The 2.5% and 97.5%
quintiles of this distribution indicated the lower and
upper bound of the 95% CI of the ratio of ORs, respectively.
All analyses were carried out in R for Windows (version
2.5.1; R Foundation for Statistical Computing, Vienna,
Austria).

RESULTS
Pooling of different influenza epidemic periods resulted in
50,906 periods of observation. In 37,501 (73.7%) of these
periods the influenza vaccine was taken. Vaccinated subjects
were older and had a higher prevalence of different classes of
comorbidity, and they more often visited their GP during the
12 months preceding influenza vaccination (table 1). These
numbers did not materially differ in individual years that were
studied. In total, 415 subjects died during the influenza
epidemics (1.04 per 1,000 weeks of observation). Pooling of
consecutive summer periods resulted in 50,069 periods of
observation and, in 36,757 (73.4%) periods, influenza vaccine
was administered in the vaccination year preceding the
summer period. During the summer periods, 854 subjects
died (0.85 per 1,000 weeks). Without adjustment for confoun-
ders, influenza vaccination did not show a clear effect on
mortality risk during influenza epidemic periods (OR 0.86,
95% CI 0.69–1.06), whereas during summer periods influenza
vaccination was associated with increased mortality risk (OR
1.20, 95% CI 1.02–1.40). Adjustments for age, sex and prior
healthcare use as confounders resulted in a decreased OR of
the association between influenza vaccination and mortality
risk compared with the crude association in all three methods
(fig. 1). Importantly, additional inclusion of the potential
confounders, presence of high-risk comorbidity and medication

TABLE 1 Characteristics of vaccinated and unvaccinated persons, and survivors and nonsurvivors#

Variable Total Vaccinated Unvaccinated OR (95% CI) Deaths Survivors OR (95% CI)

Periods of observation n 50906 37501 13405 415 50491

Vaccinated 73.7 (37501) 70.6 (293) 73.6 (37208) 0.86 (0.69–1.06)

Age yrs 75 (70–80) 75 (70–81) 74 (69–80) 1.07 (1.06–1.09)" 81 (74–87) 75 (70–80) 1.51 (1.43–1.61)"

Male 38.3 (19484) 39.4 (14762) 35.2 (4722) 1.19 (1.15–1.24) 47.0 (195) 38.2 (19289) 1.43 (1.18–1.74)

Cardiovascular comorbidity 10.2 (5171) 10.9 (4100) 8.0 (1071) 1.41 (1.32–1.52) 33.0 (137) 10.0 (5034) 4.45 (3.62–5.47)

Pulmonary comorbidity 5.2 (2629) 6.0 (2254) 2.8 (375) 2.22 (1.99–2.48) 12.3 (51) 5.1 (2578) 2.60 (1.94–3.50)

Diabetes mellitus 6.5 (3328) 7.5 (2796) 4.0 (532) 1.95 (1.77–2.14) 11.3 (47) 6.5 (3281) 1.84 (1.35–2.49)

Malignancies 2.2 (1128) 2.2 (843) 2.1 (285) 1.06 (0.92–1.21) 12.5 (52) 2.1 (1076) 6.58 (4.89–8.85)

Cardiovascular

medication use

47.4 (24112) 51.2 (19189) 36.7 (4923) 1.81 (1.73–1.88) 64.8 (269) 47.2 (23843) 2.06 (1.68–2.52)

Pulmonary medication use 11.4 (5809) 13.3 (4987) 6.1 (822) 2.35 (2.17–2.53) 21.7 (90) 11.3 (5719) 2.17 (1.71–2.74)

Diabetic medication use 7.8 (3973) 9.1 (3396) 4.3 (577) 2.21 (2.02–2.41) 14.5 (60) 7.7 (3913) 2.01 (1.53–2.65)

GP visits 12 (6–20) 13 (8–21) 8 (4–15) 1.21 (1.19–1.22)+ 27 (16–41) 12 (6–19) 1.31 (1.28–1.34)+

Data are presented as % (n) or median (interquartile range), unless otherwise stated. Baseline characteristics are based on the 12 months preceding influenza

vaccination. OR: odds ratio; CI: confidence interval; GP: general practitioner. #: all-cause mortality; ": based on 5-yr strata; +: based on strata of five contacts.
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use, did not further affect the adjusted association, even though
these covariates were univariately associated with both vaccina-
tion status and mortality (table 1).

After full adjustment using a multivariable logistic regression
analysis, an OR of 0.58 (95% CI 0.46–0.72) was observed.
Propensity score regression analysis (OR 0.56, 95% CI 0.45–
0.69) and propensity score matching (OR 0.56, 95% CI 0.44–
0.71) showed similar associations (table 2). Confounders were
well balanced between groups of vaccinated and unvaccinated
subjects among different propensity score quintiles (table 3). In
accordance with table 1, the group of patients with the highest
propensity score (those with the highest probability of being
vaccinated) had the highest prevalence of comorbidity. Within
quintiles of the propensity score, vaccinated and nonvacci-
nated subjects were comparable with respect to demographics
and comorbidity status.

After adjustment for measured confounders, influenza vacci-
nation reduced mortality during summer periods, even though
no effect was expected (e.g. OR 0.84, 95% CI 0.71–1.00, for
multivariable regression analysis). Each estimated association
during summer was taken as a measure of unobserved
confounding for the respective adjustment method applied
and the specific set of confounders. After adjustment for this
unmeasured confounding, the OR of the association between
influenza vaccination and mortality risk stabilised at ,0.7 for
all sets of confounders and all methods applied (table 4 and
fig. 1).

For measured confounding, adjusted estimates of vaccine
effectiveness during influenza seasons were somewhat lower
for persons aged o75 yrs (OR 0.66, 95% CI 0.50–0.86, for
multivariable regression analysis) than among those aged 65–
74 yrs (OR 0.45, 95% CI 0.30–0.67), although 95% CIs were
largely overlapping (p-value for interaction 0.74). After
additional adjustment for unmeasured confounders with
summer as reference, vaccine effectiveness remained higher
in those aged 65–74 yrs (OR 0.57, 95% CI 0.33–0.98) than
among persons aged o75 yrs (OR 0.76, 95% CI 0.54–1.06).

Taking potential within-person dependency into account by
means of GEE did not materially affect the effect estimates:
after full adjustment for measured confounders and taking
dependence into account, the multivariable regression analysis
resulted in OR 0.58 (95% CI 0.47–0.72) during epidemic
periods, and for summer data the OR was 0.84 (95% CI 0.72–
0.99).

DISCUSSION
This large cohort study among elderly persons covering
several years of observation showed that, after adjustments
for measured and unmeasured confounding, influenza vacci-
nation was associated with a reduction in mortality risk of
,30%. Since full adjustment, for measured confounders only,
resulted in a higher estimate of vaccine effectiveness in
reducing mortality risk of ,40%, 10% of this observed effect
is likely to be caused by healthy user bias.

In a recently published study by JACKSON et al. [14] on the
effects of influenza vaccination on the risk for community-
acquired pneumonia, no association was observed (OR 0.92,
95% CI 0.77–1.10). In the present study, pre-influenza data
were used to select potential confounders for a multivariable
model, such that the model provided an OR of 1.0. This model
was then used to assess the effects of influenza vaccination
during the influenza epidemic. Since influenza virus activity is
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FIGURE 1. Associations between influenza vaccination and mortality risk after

adjustment for confounders using different methods: a) multivariable regression

analysis, b) propensity score matching and c) propensity score regression analysis.

Epidemic effect estimates ($) were based on the pooled influenza epidemic

periods. Summer effect estimates (&) were based on the pooled summer periods.

Adjusted effect estimates (m) were the influenza epidemic effect estimates adjusted

for the amount of unmeasured confounding during summer periods. The first set of

confounders included age and sex, the second set additionally included prior

healthcare use (number of general practitioner visits), and the third set also

included comorbidity status and medication use.
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low during pre-influenza periods [2], expected effects are
unclear and the expected association between influenza
vaccination and the risk for pneumonia may not be an OR of
1.0. Therefore, the selection of covariates for the multivariable
model based on pre-influenza data could be biased.
Furthermore, subjects that are likely to die shortly after
vaccination, yet before the influenza epidemic, typically will
not apply for the vaccine. Adjustment for typical confounders
such as age, sex, comorbidity status and healthcare use may
not control this confounding [13]. However, the effects of such
possible deterioration of health status may have faded by the
time the influenza epidemic starts. During summer periods,
however, the (short-term) reasons not to take the vaccine will
possibly have less impact on mortality rates than during pre-
influenza periods and, hence, these reference periods have
been suggested previously to provide a more valid estimation
of unmeasured confounding [6].

An important finding of our study is that, during summer
periods, influenza vaccination appeared associated with a
reduction in mortality of ,16%, after adjustment for measured
confounders. This finding accords with previous studies and
might indicate potential for unmeasured confounding [13, 15,
16]. For example, in a population-based cohort study over
three influenza seasons by ORTQVIST et al. [15], influenza
vaccine effectiveness against all-cause mortality was estimated
to be 44, 40 and 37% for the different seasons. Adjustment by
means of summer periods decreased these numbers to 14, 19
and 1%. The low 1% effectiveness might be due to limited
influenza virus activity during the 2000/2001 winter season.
Our study size was adequate to answer our primary research
question, but inadequate to conduct analyses in individual
influenza epidemic periods or in selected periods during
influenza seasons (e.g. early- or late-season periods), or to
make comparisons between seasons with high and low

TABLE 2 Association between influenza vaccination and mortality risk during influenza epidemic periods and summer periods

Sets of

confounders

Multivariable regression analysis Propensity score matching Propensity score regression analysis

Influenza epidemic Summer Influenza epidemic Summer Influenza epidemic Summer

Model 1# 0.81 (0.66–1.01) 1.15 (0.98–1.36) 0.79 (0.63–0.94) 1.08 (0.95–1.23) 0.79 (0.64–0.98) 1.11 (0.94–1.30)

Model 2" 0.59 (0.48–0.73) 0.87 (0.73–1.02) 0.60 (0.48–0.73) 0.85 (0.73–0.97) 0.57 (0.46–0.71) 0.82 (0.70–0.97)

Model 3+ 0.58 (0.46–0.72) 0.84 (0.71–1.00) 0.56 (0.44–0.71) 0.81 (0.69–0.94) 0.56 (0.45–0.69) 0.80 (0.68–0.95)

Data are presented as odds ratio (95% confidence interval). #: included observed demographics (age, sex); ": included age, sex and prior healthcare use (number of

general practitioner (GP) visits); +: included age, sex, prior healthcare use, comorbidity status (cardiovascular and pulmonary comorbidity, diabetes mellitus and

malignancies), and medication use. Prior healthcare use was classified into four categories: ,6 GP visits, 6–10 visits, 11–15 visits and .15 visits.

TABLE 3 Balance of confounders among groups of vaccinated (yes) and unvaccinated (no) subjects for different strata of
propensity scores

Propensity score quintile

1 2 3 4 5

Yes No Yes No Yes No Yes No Yes No

Total periods of

observation n

10211 10121 10232 10156 10186

Probability of vaccination 56.4 69.1 76.1 80.7 86.1"

Periods of observation n 5759 4452 6994 3127 7782 2450 8200 1956 8766 1420

Age# 71 71 74 74 75 75 77 78 76 77

Male 35.9 31.9 33.0 35.7 35.3 33.6 31.7 30.6 57.5 53.7

Cardiovascular comorbidity 2.3 3.3 4.4 4.2 8.6 7.3 16.5 16.9 18.7 20.1

Pulmonary comorbidity 0.1 0.3 0.9 0.7 2.2 1.6 3.6 3.1 19.7 17.0

Diabetes mellitus 0.2 0.4 1.1 1.6 3.5 3.4 5.6 4.2 22.5 20.9

Malignancies 1.5 1.4 1.5 1.7 2.7 2.7 3.0 3.3 2.2 2.7

Cardiovascular medication

use

5.3 7.8 33.1 33.5 47.9 45.0 71.8 66.5 79.3 79.2

Pulmonary medication use 0.0 0.0 0.9 1.0 4.5 3.4 8.3 7.0 44.4 40.1

Diabetic medication use 0.0 0.0 0.3 0.8 3.2 3.3 5.2 3.9 30.8 27.7

GP visits# 4 3 8 7 12 12 19 20 23 23

Data are presented as percentages, unless otherwise stated. Within propensity score quintiles the distributions of potential confounders were balanced. GP: general

practitioner. #: median; ": patients in the fifth quintile had the highest probability of being vaccinated.
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influenza virus activity. ORTQVIST et al. [15] defined the
influenza seasons as the period December 1 to April 30,
whereas in our study influenza epidemic periods were based
on the relative number of influenza isolates per week [2],
which indicates the period with pronounced influenza activity.
Hence, in the study by ORTQVIST et al. [15], the effect estimate
might be diluted due to inclusion of nonepidemic weeks. Since
the Netherlands is a relatively small country, nationwide
surveillance data are appropriate to indicate epidemic periods
in the study region. In addition, since in the Netherlands
almost all citizens are registered with a specific general
practice and GPs are the entry points for secondary care, for
the vast majority of subjects virtually all medical data
(including hospital discharge letters) are recorded in primary
care. Hence, misclassification of vaccination status, confoun-
ders or mortality is unlikely. Furthermore, our study popula-
tion comprised community-dwelling elderly persons, whereas
the Swedish study included nursing home patients as well.
Finally, in the Netherlands, a country with no large-scale
pneumococcal vaccination, confounding by pneumococcal
vaccination would not have materially affected our estimates
of influenza vaccine effectiveness.

In a study by MANGTANI et al. [17], in which data over ten
influenza epidemic and summer periods was pooled, no effect
of influenza vaccination was observed during summer periods,
after adjustment for observed confounders (OR 1.01, 95% CI
0.96–1.06). During influenza seasons, influenza vaccination
reduced the risk for death due to a respiratory disease by 12%
(OR 0.88, 95% CI 0.84–0.92). This estimate is lower than our
estimated 30% reduction of all-cause mortality by influenza
vaccination, possibly due to inclusion of nursing home
residents in the study by MANGTANI et al. [17]. Furthermore,
in this British study, effects of influenza vaccination might
have been underestimated due to RSV activity during the
influenza season. In our study, peak influenza periods were
largely separated from peak RSV periods [2].

The observed OR of the association between influenza
vaccination and mortality risk during summer periods was
lower than anticipated (i.e. lower than 1.0), probably due to
healthy user bias. However, which unmeasured confounder
yields this bias is unclear. Functional health status has been
proposed as an important confounder. In contrast, a study in a
population of Dutch elderly persons did not indicate func-
tional health status as a confounder [25]. Another explanation
might be that, even though influenza activity is hardly

detected during summer, a small amount of virus is still
present and active, thus resulting in a reduced mortality risk
among vaccinated subjects. Since the number of reported
isolates was low during these periods, this seems highly
unlikely. A third explanation might be that functional health
status deteriorates in the course of influenza illness during
influenza epidemic periods and remains impaired even several
months after the influenza epidemic has ended [26]. If this
deterioration is prevented by influenza vaccination, lower
mortality rates can be observed after epidemic periods, i.e.
during summer periods. Finally, selection bias might have
been the cause for the observed associations during summer.
Only the subjects (either vaccinated or unvaccinated) that
survived influenza epidemic periods contributed to the
observations in summer periods. However, baseline character-
istics for the vaccinated and nonvaccinated subjects from
epidemic and summer periods were similar. Furthermore, the
association between influenza vaccination and mortality,
adjusted for both measured and unmeasured confounding,
remained constant for different sets of observed confounders
(fig. 1), because adjustment for measured confounders had the
same effect in both influenza epidemic and summer periods.
Therefore, it is unrealistic to assume that a selected subgroup
was included in summer periods, and residual confounding or
selection bias is therefore unlikely to have materially affected
the estimated associations of influenza vaccine effectiveness.

We used three methods to adjust for observed confounders,
namely multivariable regression analysis, propensity score
matching, and including propensity scores as a covariate in
regression analysis. These methods produced similar results and
were also approximately equally precise. These findings
correspond to previous studies indicating that these methods
give approximately the same results [10, 27–29]. Propensity score
methods can be useful to reduce the number of covariates to be
included in a multivariable model in case of limited sample size.
Unfortunately, propensity score methods and multivariable
regression analysis can only adjust for measured confounders.
For interventions such as influenza vaccination, reference
periods can be used to adjust for unmeasured confounding. In
other cases, possible effects of unmeasured confounding can be
quantified by means of sensitivity analysis [6, 30, 31].

In conclusion, nonrandomised studies on influenza vaccine
effectiveness are prone to confounding bias. Measured
confounding can be adjusted for by several methods. Using
summer reference periods is a powerful method to take

TABLE 4 Association between influenza vaccination and mortality during influenza epidemic periods, adjusted for unmeasured
confounding as estimated during summer periods

Sets of confounders Multivariable regression analysis Propensity score matching Propensity score regression analysis

Model 1# 0.70 (0.54–0.91) 0.73 (0.56–0.95) 0.71 (0.53–0.93)

Model 2" 0.68 (0.52–0.89) 0.71 (0.54–0.93) 0.69 (0.53–0.91)

Model 3+ 0.69 (0.52–0.92) 0.69 (0.52–0.92) 0.70 (0.53–0.92)

Data are presented as odds ratio (95% confidence interval). #: included observed demographics (age, sex); ": included age, sex and prior healthcare use (number of

general practitioner (GP) visits); +: included age, sex, prior healthcare use, comorbidity status (cardiovascular and pulmonary comorbidity, diabetes mellitus and

malignancies), and medication use. Prior healthcare use was classified into four categories: ,6 GP visits, 6–10 visits, 11–15 visits and .15 visits.
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unmeasured confounding into account. After adjusting for both
measured and unmeasured confounding, influenza vaccination
was associated with a 30% reduction in all-cause mortality
during influenza epidemics among elderly persons and efforts
should continue to vaccinate these high-risk persons.

What is already known on this topic
Since most evidence for influenza vaccine effectiveness in
terms of reduction of mortality among the elderly has been
derived from nonrandomised studies, selection of patients for
influenza vaccination may have induced confounding bias
and, hence, vaccine effects might have been overestimated.
Summer periods have been used as a reference period to
quantify unmeasured confounding.

What this study adds
In the present study, in which data on eight influenza epidemic
periods were pooled, unmeasured confounding was taken into
account by estimating influenza vaccine effectiveness during a
summer reference period. After adjustment for both measured
and unmeasured confounding, influenza vaccination was still
associated with substantial mortality risk reduction.
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