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Modelling pathogenic mechanisms of upper

airway dysfunction in the molecular age
A.R. Schwartz, S.P. Patil, H. Schneider and P.L. Smith

O
bstructive sleep apnoea (OSA) is a complex disorder
consisting of periods of upper airway obstruction
during sleep [1], which are terminated by arousals and

oxyhaemoglobin desaturations. Most adults with this disorder
present in mid-life with an up to ,20-yr progressive history of
loud snoring often of increasing intensity, punctuated by
witnessed apnoeas and resuscitative snorts. As sleep apnoea
develops, patients may begin to complain of sleep disruption
and frank daytime hypersomnolence. The reasons for the
development and progression of this disorder, however, are
not well understood.

A combination of inherited and acquired factors may contribute
to the pathogenesis of OSA [2, 3]. A heritable predisposition to
this disorder is suggested by the elevated prevalence of sleep
apnoea in males compared with females and in African-
American and East Asian compared with Western populations
[4–9], as well as by studies demonstrating alterations in
pharyngeal anatomy between those with and without sleep
apnoea [10–12]. Conversely, weight gain and age can contribute
substantially to sleep apnoea prevalence, suggesting that sleep
apnoea susceptibility may also be acquired [13, 14]. The precise
mechanisms for the development of upper airway dysfunction
during sleep, however, are not known.

Investigators have recognised that elevations in upper airway
collapsibility play a primary role in the pathogenesis of OSA
[15–24]. Recent evidence also suggests that these increases are
due to pharyngeal anatomic alterations and disturbances in
neuromuscular control, and that both defects in upper airway
structures and neuromuscular responses are required for the
development of OSA [20, 25]. Upper airway structural defects
may develop in association with increases in body weight and
age [22, 26–28], whereas aging and post-menopausal status
may promote disturbances in pharyngeal neuromuscular

control during sleep [29–37]. Thus, pathogenic effects of
obesity, age and menopause on upper airway neuromechanical
function can combine to increase sleep apnoea susceptibility
and progression across the lifespan.

As upper airway obstruction during sleep ensues, changes in
pharyngeal mucosal and muscle function can accelerate sleep
apnoea progression in humans. SÉRIÈS et al. [38] have
postulated that disease progression may be related to ultra-
structural alterations in pharyngeal tissues, which are char-
acterised by the infiltration of inflammatory cells and
remodelling of extracellular matrix tissue. These histopatholo-
gical changes in the pharyngeal mucosa may deaden sensory
receptors that might ordinarily play a critical role in the
maintenance of airway patency during sleep [39–42].
Normally, these receptors respond to the markedly negative
intraluminal pressures generated during periods of upper
airway obstruction by activating pharyngeal dilator muscles
that restore airway patency during sleep [43–46]. Mechanical
and neurosensory defects related to snoring and sleep apnoea
may be exacerbated by the development of epithelial thicken-
ing and submucosal oedema [47, 48], which may also degrade
the contractile efficiency of pharyngeal dilator muscles [49].
Moreover, obesity and sleep apnoea are associated with excess
adipose deposition in pharyngeal tissues [11, 50, 51], which can
produce a state of chronic mechanical overload for the
pharyngeal musculature [52]. The above findings are consis-
tent with the notion that adiposity leads to a cascade of
pharyngeal ultrastructural alterations and progressive defects
in upper airway neurosensory and neuromuscular control.

Limited access to human pharyngeal tissue has hampered our
ability to dissect histopathological mechanisms of pharyngeal
dysfunction during sleep. Human tissue specimens have been
acquired from surgery (uvulopalatopharyngoplasty) [52, 53]
and/or autopsy. Interpreting histopathological data from these
sources is probably confounded by patient selection bias and/
or incomplete characterisation of sleep apnoea disease status.
Rodent models can overcome these limitations by elucidating
the molecular, cellular and histopathological disturbances that
result from controlled physiological alterations in normal
upper airway tissues.

In the present issue of the European Respiratory Journal,
ALMENDROS et al. [54] have advanced in our understanding of
sleep apnoea pathogenesis significantly by utilising an estab-
lished isolated upper airway model [55–62]. By modelling the
impact of repetitive airway closure and reopening on phar-
yngeal tissue characteristics, these investigators have demon-
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strated early changes in the expression of inflammatory genes
for macrophage inflammatory protein-2, tumour necrosis
factor-a, interleukin-1b and P-selectin in the pharyngeal and
laryngeal mucosa. Their findings indicate that the mechanical
effects of snoring and periods of upper airway obstruction
trigger an inflammatory cascade that may ultimately account for
the ultrastructural changes in the pharyngeal mucosa, soft
tissues, sensory nerves and muscles previously observed in
humans [63, 64]. Inflammatory changes in the mucosa may
produce sensory impairment [65, 66] and degrade protective
reflexes to negative pressure during periods of upper airway
obstruction [39–42, 67]. A major implication of the findings of
ALMENDROS et al. [54] in their rodent model is that a single
‘‘night’’ of snoring and/or obstructive apnoeas can initiate the
inflammatory changes within the pharyngeal tissues. In
humans, it is also possible that upper airway anatomic loads
in combination with mechanical trauma can initiate a similar
inflammatory process, leading to a series of ultrastructural
changes that aggravate neuromechanical defects and accelerate
the progression from asymptomatic snoring to OSA (fig. 1).

Some questions also remain about the impact of early changes
in the expression of inflammatory genes in the laryngeal and
pharyngeal mucosa. What precisely is the stimulus of gene
expression changes in both the pharyngeal and laryngeal
mucosa? Do these genes lead to infiltration of inflammatory
cells and oedema fluid in the pharyngeal mucosa? Are these
changes in gene expression responsible for chronic remodel-
ling of the pharyngeal wall? What are the consequences of
these histopathological changes on pharyngeal mechanical
properties and neuromuscular responses? Is it also possible
that ‘‘overspill’’ from pharyngeal inflammation contributes to
systemic inflammation in obesity and sleep apnoea [68], and
mediates the deleterious metabolic and cardiovascular effects
observed in obesity and sleep apnoea [69, 70]? While
numerous questions still remain, ALMENDROS et al. [54] offer a
rodent upper airway model to overcome inherent limitations
of human studies and elucidate underlying pharyngeal
mechanisms of sleep apnoea pathogenesis.
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FIGURE 1. Mechanisms of upper airway dysfunction and sleep apnoea

pathogenesis. Sleep apnoea risk factors are associated with defects in upper

airway mechanical and/or neural control. These alterations produce collapse,

vibration (snoring) or repetitive opening and closure of the pharynx (obstructive

apnoea). Mechanical trauma can cause inflammation, tissue oedema, and

remodelling and sensory disturbances, which further impair pharyngeal mechanics

and neural responses, and accelerate the progression toward sleep apnoea.
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