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T-cell co-stimulatory molecules: novel

targets for the treatment of allergic

airway disease
K.C. Beier, T. Kallinich and E. Hamelmann

ABSTRACT: The first two articles in this series discussed the fundamental concept of T-cell co-

stimulation as a key event in the induction of any immune response, in addition to reviewing the

current data on the role of co-stimulatory molecules for the induction and progression of allergic

airway diseases. Based on these considerations, this final edition will delineate and discuss novel

strategies for the prevention and/or therapy of allergic diseases based upon the modulation of co-

stimulation.
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A
llergic airway disease is characterised by
reversible airway obstruction and bron-
chial hyperreactivity based upon

allergen-induced airway inflammation. Chronic
uncontrolled inflammation damages lung tissues
and ultimately leads to structural changes (remo-
delling), thus causing irreversible loss of lung
function. The overall socio-economic and health-
care burden caused by this kind of chronic
airway disease is a major concern worldwide,
and new methods to inhibit or suppress the
chronic inflammatory process is a primary goal of
asthma therapy.

Current guidelines for asthma treatment recom-
mend first-line anti-inflammatory therapy with
inhaled and, in the most severe cases, systemic
corticosteroids (CS) [1]. CS are, in most cases,
effective in controlling the allergic airway inflam-
mation, but bear the risk of adverse effects, such
as general or local immune suppression, diabetes,
adiposity etc., due to their pleiotropic effects on
various cell types and tissues. Positive long-term
effects in preventing tissue remodelling by treat-
ment with CS have been challenged by data
showing little or no effect of continuous CS
treatment on post-bronchodilator forced expira-
tory volume in one second, the parameter most
closely linked to structural changes of lung

tissues [2]. Furthermore, the need for continuous
application of CS and the lack of a curative
approach are a matter for discussion [3].
Supplementary or new anti-inflammatory drugs
for asthma therapy such as antihistamines,
phosphodiesterase E4 inhibitors, leukotrine-
antagonists or even anti-immunoglobulin (Ig)E
only suppress certain symptoms or parts of the
allergic inflammatory process but fail to control
the complete cascade. Therefore, full or satisfying
control of symptoms is barely achieved even with
a combination of several of these drugs [4], and
the use of general immunosuppressive agents such
as cyclosporine A or methotrexate is sometimes the
last option for patients with steroid-resistant or -
dependant disease. The only treatment directed at
the underlying immune deviation of allergic
diseases is specific immunotherapy, but it is
limited by availability of only certain allergens
and the risk of severe or even fatal side-effects.

Increasing insight into the underlying immune
mechanisms of allergic airway inflammation
gave rise to new experimental approaches inter-
fering with the inflammatory process in a more
specific and pathogenesis-related way by target-
ing certain cells, cytokines or cell surface mole-
cules. Since the late 1990s it has been shown in
experimental models that certain cells and
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mediators like mast cells [5], B-cells and even IgE [6] are
dispensable for the progression of the inflammatory process.
For CD4+ T-cells however, there is strong and convincing
evidence for an obligatory role in the development of allergic
immune responses in the lung [7–9]. Activation, differentiation
and effector cell function of CD4+ T-cells is directed by so-
called co-stimulatory molecules that deliver critical signals
modulating the antigen-specific signal of the T-cell receptor
(TCR). A large number of co-stimulatory molecules have been
identified since the mid 1990s, which were introduced in the
first part of this series [10]. There is increasing evidence that at
least some of these molecules have a pivotal role in the
induction and maintenance of allergen-induced airway inflam-
mation, as summarised in the second part of this series [11].
The current third and final part of the series will: 1) outline
data from experimental studies in murine models of allergic
airway inflammation interfering with co-stimulatory pathways
by means of blocking reagents; 2) examine these experimental
findings with regard to optimal targets for human interven-
tion; and finally 3) discuss future intervention strategies in
human allergic airway disease.

TREATMENT OF ALLERGEN-INDUCED AIRWAY
INFLAMMATION BY TARGETING CO-STIMULATORY
MOLECULES: WHAT IS THE EXPERIMENTAL
EVIDENCE?
The role of co-stimulatory molecules in allergen-induced
airway inflammation has mostly been studied in murine
models. The approaches may be classified according to the
time of intervention as: 1) primary intervention which targets
the induction phase of the allergic sensitisation; 2) secondary
prevention, targeting the induction of airway inflammation in
already sensitised animals; or 3) treatment of animals after
sensitisation and airway allergen challenges (table 1). In
general, it is obvious from the experimental data that early
blocking of allergic sensitisation effectively inhibits the devel-
opment of specific IgE, cytokine production by type 2 T-helper
cells (Th2; mostly determined in bronchoalveolar lavage (BAL)
fluids), airway hyperresponsiveness (AHR) and inflammation.
Even though not fully applicable to human disease, animal
models provide valuable insight into the processes involved
and are the basis for further research in humans. Due to the
lack of human studies on co-stimulatory molecules in allergic
airway disease, the present discussion is based on current
knowledge as gained from animal models. The most inten-
sively studied molecules in this context are CD28, inducible co-
stimulatory antigen (ICOS) and CD134 (OX40), which will be
discussed in more detail. Only preliminary data have been
obtained on other co-stimulatory pathways. Table 1 provides
an overview of the current data regarding the role of co-
stimulatory molecules in murine allergen-induced airway
disease, as will be discussed.

Targeting CD28
The role of CD28 in models of allergic airway inflammation
has been extensively studied in murine models of allergen-
induced airway inflammation (table 1). Although the primary
goal of these studies was to analyse the impact of co-
stimulatory molecules on different aspects of the inflammatory
process, e.g. eosinophilic airway inflammation, Th2 cytokine
production, AHR and systemic IgE synthesis, these data can

also be used to assess the suitability of CD28 as a therapeutic
target in the treatment of allergic airway inflammation.

Systemic administration of the fusion protein cytotoxic T-
lymphocyte antigen (CTLA)-4-Ig inhibits the ligation of CD28
with its ligands, CD80 and CD86. When given during the
course of allergen sensitisation, a drastic effect on airway
inflammation and AHR was observed; however, the produc-
tion of the Th1 cytokine interferon (IFN)-c was unaltered [12,
16]. Some of these effects may be explained by the complete
inhibition of the germinal centre reaction after blockade of the
CD28/CD86 signal during the primary immune response [27].
When CTLA-4-IgG was applied after the initial T-cell
sensitisation, i.e. during the phase of allergen rechallenge, this
treatment also led to a marked reduction in the inflammatory
response [13, 19, 20]. Only one report has shown contrasting
results with no effect on AHR and cellular infiltration
following the administration of CTLA-4-Ig at the time of
allergen challenge [16]. Thus, interruption of the CD28 co-
stimulatory signal also inhibits secondary immune responses,
in at least some protocols of murine allergen-induced airway
inflammation, but has the strongest impact on primary
immune responses upon the first exposure to allergen.

In other studies, monoclonal antibodies against the two ligands
of CD28, CD80 and CD86, were administered independently to
delineate the role of these molecules. Overall analysis of these
studies reveals that CD86 appears to be the major ligand
responsible for CD28-dependent immune responses observed
during allergen-induced airway inflammation (table 1). This is
also implied by the observation that a combination of
antibodies against both ligands was not superior to anti-
CD86 treatment alone in two out of three studies [20, 21]. The
question of a differentiated role of the two CD28 ligands was
further addressed by the use of a fusion protein, Y100F. This
molecule blocks CD28–CD80 interactions, leaving CD28
signalling via CD86 intact [28]. Similar to CTLA-4-Ig, applica-
tion of Y100F reduced eosinophilic infiltration into the lungs,
mainly due to decreased interleukin (IL)-5 production by
allergen-specific T-cells [29]. In contrast to blocking all CD28
signals, Y100F had no effect on the number of eosinophils in
peripheral blood or on systemic IgE production, indicating a
major role of CD86 signals in local immune responses.

In somewhat different experimental settings, ligation of CD28
by the CD28 ligand CD80 has been shown to have either no
[20–22], an increasing [28, 29] or a decreasing effect [30, 31] on
allergen-induced airway responses. Thus, the precise role of
this CD28 ligand in the T-cell differentiation remains an
unanswered question.

Targeting ICOS
In contrast to blocking CD28, blockade of ICOS by the
application of ICOS-Ig or anti-ICOS monoclonal antibodies
(mAb) at the time of allergen sensitisation, showed only little
effect on the development of airway inflammation (table 1) [16].
However, blockade of ICOS in sensitised mice significantly
reduced signs of allergic airway inflammation, such as
increased IgE and Th2 cytokine production [16]. Using a model
of adoptive transfer, it was further demonstrated that blockade
of ICOS distinctively inhibited Th2-mediated lung eosinophilia
and airway hyperreactivity, but did not abrogate Th1-mediated
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neutrophilic airway inflammation [24]. Similarly, the Th2-
associated airway inflammatory response to Schistosoma mansoni
eggs was attenuated by ICOS blockade, whereas the priming of
T-cells towards the Th2 cell direction was abolished by this
approach [32]. The differential role of ICOS in Th1 versus Th2-
biased immune reactions was further analysed in a model of
allergen-induced primary immune reactions induced by the
local application of Th1 and Th2 cytokines. In this model,
blockade of ICOS inhibited the early inflammatory cell influx
and IL-5 production in the lungs in the Th2, but not in the Th1,
model [15].

Taken together these results render ICOS a promising target to
interfere with secondary immune responses, and suggest a
predominant involvement of ICOS in Th2-type responses.

Targeting OX40
Utilising OX40 knock-out mice, it was demonstrated that OX40
plays an important role in effector cell expansion and the
formation and re-activation of memory T-cells [33–36].
Blocking the OX40 signal with mAb against OX40L in a model
of Leishmania major infection resulted in decreased synthesis of
Th2 cytokines (IL-4, IL-10 and IL-13) as well as reduced
production of IgE [37]. In mouse models of allergen-induced

airway inflammation there are somewhat controversial results
regarding the time-point of OX40 action. Blockade of OX40L
abolished the development of airway inflammation only when
the anti-OX40L mAb was applied during allergen sensitisation,
but not when given to already sensitised mice prior to allergen
airway challenge [17]. In contrast, another study demonstrated
that OX40L blockade of sensitised mice during allergen airway
challenges abolished inflammatory responses, also at very late
time points of the experimental protocol [25].

Other co-stimulatory pathways
Very limited information is available on the effects of blocking
other co-stimulatory molecules in murine models of allergen-
induced airway disease. To date, no studies investigating the
blockade of the B- and T-lymphocyte attenuator (BTLA) or B7-
H3 have been published. Recently, it was shown that a single
injection of mAb against the co-stimulatory factor CD137 (4-
1BB) prevented the development of AHR, eosinophilic airway
inflammation and elevated IgE production [38]. This treatment
was also able to reverse previously established airway disease.
The inhibitory effect was most likely due to reduced Th2
cytokine production and increased secretion of IFN-c by
CD8+ T-cells.

TABLE 1 Murine studies blocking co-stimulatory molecules in allergen-induced airway disease

Approach Target Outcome [Ref.]

Eosinophilia in BAL Pulmonary infiltration AHR IgE

Prevention of sensitisation CD80/CD86 Q ND Q Q [12]

CD80/CD86 ND Q Q ND [13]

CTLA-4 q ND q q [14]

ICOS-L ND Q ND ND [15]

ICOS ND Q ND q [15]

ICOS (Q) « « (Q) [16]

OX40L Q Q Q Q [17]

CD30L ND Q Q Q [18]

CD30 ND Q Q Q [18]

Prevention of airway

inflammation

CD80/CD86 Q Q ND Q [13]

CD80/CD86 Q ND Q Q [12]

CD80/CD86 Q ND Q Q [19]

CD80/CD86 Q ND Q Q [20]

CD80/CD86 Q ND Q Q [21]

CD80/CD86 (Q) ND « « [22]

CD80/CD86 Q Q ND « [23]

CTLA-4 « ND « « [14]

ICOS-L Q Q Q ND [16]

ICOS-L Q Q ND ND [24]

ICOS Q Q Q Q [16]

OX40L « « « ND [17]

OX40L Q Q Q Q [25]

Treatment of established

airway inflammation

CD80/CD86 Q ND ND Q [26]

ICOS ND « ND « [15]

CD30 ND « « « [18]

CD30-L ND « « « [18]

BAL: bronchoalveolar lavage; AHR: airway hyperresponsiveness; Ig: immunoglobulin; ND: not determined; CTLA: cytotoxic T-lymphoctye antigen; ICOS: inducible

co-stimulator antigen; ICOS-L; ICOS ligand; OX40: CD134; OX40L: OX40 ligand; Q: decreased; q: increased; (Q): weak increase; «: unchanged.
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Only preliminary data exist on manipulation of the negative
regulatory molecule programmed cell death (PD)-1: an
analysis of the distinctive contribution of its two ligands, PD-
L1 and PD-L2, in the development of allergen-induced murine
airway inflammation showed that a substantial number of
pulmonary dendritic cells (DCs), macrophages and B-cells
isolated from the lungs of naı̈ve mice expressed PD-L1, which
was further enhanced after allergen sensitisation and airway
challenge [39]. In contrast, PD-L2 expression was detectable at
very low levels in lymphocytes of unchallenged mice, and was
only moderately enhanced in DCs and macrophages after
allergen challenge of sensitised mice. Although PD-L1 was
abundantly expressed on various antigen-presenting cells in
the inflamed lung tissues, treatment with a blocking antibody
did not alter the allergic airway response, whereas treatment
with anti-PD-L2 mAb (TY25) during allergen challenge
significantly increased the development of airway hyperreac-
tivity, and lung eosinophilia increased levels of IL-5 and IL-13
in BAL fluid [40]. When PD-L2 was only blocked during
sensitisation, no effect on the inflammatory response was
demonstrated, indicating that the inhibitory function of PD-L2
was limited to the effector phase (airway challenge) of the
airway response.

Recently, blockade of CD30 and its ligand CD153 with mAbs
was shown to significantly reduce airway inflammation, AHR
and the production of allergen-specific IgE when the blocking
antibody was administered before and after sensitisation [18].
However, neither blocking reagent had any effect when
administered during established allergic airway disease.

WHAT MAKES A PROMISING TARGET?
From these studies in murine models of allergen-mediated
airway inflammation, as well as from experiences of other
immune modulators in asthmatic patients, some baseline
conclusions may be drawn that characterise specific co-
stimulatory molecules as optimal targets for therapeutic
intervention (table 2).

T-cell specificity
When targeting T-cells, T-cell specificity is a major criterion, as
simultaneous expression of the target molecule on anything
other than T-cells may lead to unforeseen side-effects. An
example of this was experienced in early clinical trials blocking
the CD40 ligand (CD40L) with mAbs. Blocking of CD40L in
murine models was shown to attenuate IgE production [41],

although it had no effect on cellular infiltration of the airways.
In patients, a monoclonal antibody directed against CD40L
(Ruplizumab) was first used for the treatment of systemic
lupus erythematosus. However, the trials had to be discon-
tinued because of life-threatening pro-thrombotic side-effects
due to expression of CD40L on activated platelets [42].
Therefore, T-cell restricted expression should be considered
critical when identifying targets with which to modulate T-cell
function. To date, this criterion is not met by the co-stimulatory
molecules CD27, CD30, BTLA and PD-1.

Expression on T-cells
Targeting a molecule that is expressed constitutively on T-cells
implies targeting all T-cells unselectively. Nonselective deple-
tion of T-cells bears the risk of long-lasting lymphopenia and
immune suppression, as experienced in clinical trials using
anti-CD3 mAbs for immune suppression after organ trans-
plantation [43]. Nonselective and strong stimulation of all T-
cells via a constitutively expressed co-stimulatory molecule can
lead to cytokine release syndrome as seen recently with the
anti-CD28 antibody TGN1412 [44]. As these are unacceptable
side effects in the treatment of allergic inflammation, the
constitutively expressed co-stimulatory molecules CD27,
CD28, BTLA and herpes virus entry mediator do not qualify
as optimal targets.

Predominant involvement in secondary immune reactions
In patients with bronchial asthma, allergic airway disease is an
ongoing secondary immune response triggered by re-exposure
to specific allergens. A therapeutic intervention against asthma
would preferably interfere with these secondary inflammatory
reactions, while leaving primary immune reactions critical in
mounting a host defence against pathogens unaffected. CD28,
for instance, is the major co-stimulatory factor for the
activation of naı̈ve T-cells, and is therefore critical for the
initiation of primary immune responses [27]. In murine
models, CD28 blockade was most effective when administered
during allergen sensitisation [12, 16]. This would render CD28
blockade an improper treatment strategy for human allergies,
since the time-point of sensitisation is impossible to determine
in the course of human allergic disease. However, blocking
CD28 during secondary immune responses has shown some
anti-inflammatory effects in mice [19, 20]. Moreover, clinical
trials for the treatment of rheumatoid arthritis, employing the
blockade of the CD28/B7 pathway with a CTLA-4-Ig fusion

TABLE 2 Criteria for optimal targets

Criteria BTLA CD27 CD28 CD30 CTLA-4 HVEM ICOS OX40 PD-1 SLAM 4-1BB

T-cell specificity - - + - + - + + - - -

Nonconstitutive expression - - - + + - + + + + +
Predominance for second-

ary immune reactions

- - - + - - + + + - -

Positive regulatory role - + + + - + + + - + +
Th2 bias - - - + - ND + + - - -

BTLA: B- and T-lymphocyte attenuator; CTLA: cytotoxic T-lymphocyte antigen; HVEM: herpes virus entry mediator; ICOS: inducible co-stimulatory antigen; OX40: CD134;

PD: programmed cell death; SLAM: signalling lymphocyte activation molecule; Th2: type 2 T-helper cell; ND: not determined.
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protein, have shown little apparent toxicity and good anti-
inflammatory properties [45–47]. In fact, this CTLA-4-Ig fusion
protein, abatacept, is the first approved anti-co-stimulatory
drug on the market [48].

Two co-stimulatory molecules predominantly involved in
secondary immune reactions are ICOS and OX40. In contrast
to CD28, ICOS expression is limited to currently activated T-
cells [49, 50]. In murine studies, ICOS-blocking reagents were
most effective during secondary immune responses [16, 32].
Targeting OX40 in animal models of allergic airway disease
was revealed to be effective during sensitisation, as well as
during rechallenge with allergen [25].

Positive regulatory signal
One major concern, besides compromising primary physio-
logical immune reactions, is that negative signals delivered by
co-stimulatory molecules would also be compromised by this
approach. Blocking negative signals bears the risk of auto-
reactive immune responses and increased development of
autoimmune diseases as a consequence of a disrupted negative
feedback mechanism of immune balance. Therefore, this may
disqualify negative co-stimulatory factors, such as BTLA and
CTLA-4, as optimal treatment targets.

Th2 bias
As outlined in the second part of the series [11], the allergic
airway inflammation is a Th2-dominated process, although
recently, evidence for the involvement of Th1 cytokines,
especially in established airway disease, has arisen. The
predominant involvement of Th2-cytokines in airway inflam-
mation makes these molecules a preferable target in the therapy
of allergic reaction. This criterion is only met by the co-
stimulatory molecules CD30, ICOS and OX40. CD30, however,
does not meet the criteria of T-cell specificity. ICOS is expressed
on Th1 as well as on Th2 T-cells, but only Th2-mediated airway
inflammation is affected by ICOS-blockade [15, 24].

However, during an established inflammatory response like
allergic asthma, this situation might be more complex than it
appears in murine models of acute airway inflammation. ICOS
is also expressed on regulatory T-cells (Tr) and may be
important for the production of the immune suppressive
cytokine, IL-10 [51]. Even though a further study using a
murine colitis model demonstrated that ICOS blockade had
minimal effect on Tr function [52], it remains to be determined
how the immune balance is affected by long-term blockade of
ICOS. A complete lack of ICOS expression in humans is
associated with a loss of B-cell memory [53], a side-effect that
may be desirable concerning local memory for IgE, but is
definitely intolerable for any other systemic immune response.
Therefore, the route of application and the place of deposition
are important factors that need to be considered when
targeting co-stimulatory molecules.

WHAT ARE THE BEST STRATEGIES FOR INTERFERING
WITH CO-STIMULATORY SIGNALS?
Not only is the identification of the optimal target molecule a
prerequisite for effective treatment by interfering with co-
stimulatory molecules, but also careful considerations need to
be made about the tools, administration and the immunological

aim of successful intervention into an ongoing inflammatory
process.

Tools for modulation of co-stimulatory signals
Blocking co-stimulatory signals can either be achieved using
mAbs or fusion proteins containing the counter receptor. Half-
life and tissue distribution of the blocking reagent within the
human body are critical variables that will determine the
duration of the blocking effect and the frequency required for
application. The first insights in the human system have been
gained by the use of anti-CD3 mAbs in organ transplantation
[43] and the CTLA-4 fusion protein for rheumatoid arthritis
[45]. Data from these and other studies show that using
humanised mAbs is, in general, safe and does not bear the risk
of anaphylactic side-effects. Due to the complexity of the
allergic immune-response and the asthmatic airway-response
it is highly likely that targeting a single molecule may not be
sufficient to gain complete control of allergen-mediated
inflammation. For murine models of allograft rejection, it
was shown that dual blockade with mAbs was more effective
than blockade of a single molecule [54]. In this respect, a
feasible approach may be to target not only one, but two
(e.g. ICOS and OX40) or even more co-stimulatory molecules to
treat asthma (fig. 1). However, such studies are still out-
standing for allergic disease models.

The consequences of using agonistic mAbs may be far more
difficult to predict than those with blocking reagents. While
dosing antagonists is stoichiometric, the action of agonists is a
function of the strength of the agonist, the cascade it induces
and the consequences of that cascade [55]. In-depth knowledge
of receptor distribution and action, as well as intensive animal
testing, are critical, as demonstrated by the TeGenero fiasco
with an agonistic anti-CD28 antibody [44].

Administration of immune modulators
Besides systemic administration of an immune modulator,
local deposition of a blocking reagent in the lungs should be
considered a feasible route of application. During allergic
airway inflammation, the number of T-cells producing Th2-
cytokines are increased in the pulmonary compartment [56].
Therefore, it seems reasonable to directly target this process in
the lung to avoid systemic side-effects. Indeed, in mouse
models of allergen-induced airway disease, local application of
mAbs or fusion proteins into the airways was shown to control
allergic airway inflammation, as demonstrated for the IL-13
receptor a fusion protein [57] and anti-IL5 mAbs [6, 58]. In
humans, one study showed that administration of an inhaled
monoclonal anti-IgE antibody (E25) was generally well
tolerated and led to detectable levels of the antibody in both
BAL and serum [59]. However, the aerosolised antibody did
not attenuate the airway response to inhaled allergen as it did
when applied i.v. The authors speculated that the aerosol route
of application did not lead to sufficient concentrations of the
antibody in the critical tissue compartments surrounding IgE
effector cells. Furthermore, one subject developed IgG and IgA
antibodies against E25, suggesting that lung deposition of the
antibody may be more immunogenic than the parental route.
Therefore, local deposition, tissue penetration, serum levels
and half life, as well as immunogenicity, are critical variables
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that need to be considered when evaluating this route of
application.

Blockade versus elimination of allergen-specific T-cells
An interesting alternative to continuous application of a
blocking agent would be the permanent elimination of
allergen-specific T-cells from the immune system, as recently
proposed by KROCZEK and HAMELMANN [60]. This would
require a target that is T-cell specific and not expressed on
naı̈ve or quiescent memory T-cells, but rather is expressed on
recently activated T-effector or reactivated memory cells. From
the group of co-stimulatory molecules, ICOS and OX40 meet
these criteria. Elimination of all ICOS- and OX40-positive T-
cells during an ongoing allergic reaction may remove the
allergen-specific T-effector and reactivated memory T-cells,
subsequently leading to downregulation of humoral responses
and inflammatory cell infiltration, which both depend on T-cell
help. The aspired benefits of such an approach would be a

long-lasting therapeutic effect achieved by only a short-term
treatment. Furthermore, this sort of treatment would be
available and effective for allergic sensitisation against all
possible allergens, in contrast to specific immunotherapy.
However, the feasibility of this approach remains to be tested
in appropriate animal models.

CONCLUSION
The underlying immune mechanisms of allergic airway disease
have been untangled via the use of mouse models and clinical
studies. The time has now come to widen the repertoire of
therapeutic tools and to initiate immunological and patho-
genesis-related approaches to treatment. One of the most pro-
mising new strategies is based on the blockade of co-stimulation,
a critical and early event in the induction and maintenance of
allergen-induced airway diseases such as bronchial asthma. The
hypothetical concept is valid, but still needs to be tested in further
experimental models and initial clinical trials. It will, however, be
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FIGURE 1. Blockade of co-stimulatory molecules in allergic airway inflammation. APC: antigen-presenting cell; MHC: major histocompatibility complex; TCR: T-cell

receptor; IL: interleukin; Th: T-helper cell; Tm: memory T-cell; Tr: regulatory T-cell; CD40L: CD40 ligand; ICOS: inducible co-stimulatory antigen; ICOS-L: ICOS ligand; OX40:

CD134; OX40L; OX40 ligand; PD: programmed cell death; Ig: immunoglobulin.
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fascinating to find out which of these predictions can be turned
into feasible therapeutic interventions for the future.
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