European Respiratory Society


Some 300 million yrs ago, the ancestors of modern reptiles emerged from water and were committed to air breathing. They were exothermic and incapable of sustained levels of high physical activity. But from them evolved the two great classes of vertebrates with high levels of maximal oxygen consumption: the mammals and birds. A remarkable feature of these two divergent evolutionary lines is that, although the physiology of many organ systems shows many similarities, the lungs are radically different. A major difference is that the ventilation of the gas-exchanging tissue has a flow-through pattern in the bird but is reciprocating in the mammal. The result is that mammals have a reduced alveolar and arterial oxygen tension, a potential for uneven ventilation, and relatively large terminal air spaces. This in turn means that the pulmonary capillaries are poorly supported compared with the bird. The result is that the pulmonary capillaries in the bird have much thinner and more uniform walls, with more efficient gas exchange. Other advantages of the bird lung are that it utilises a more efficient cross-current pattern of gas-exchange, and the bird has separated the ventilatory and gas exchange functions. From a structure–function standpoint, the bird lung is superior.


  • For editorial comments see page 1.

View Full Text