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Pathophysiology of bronchial smooth

muscle remodelling in asthma
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ABSTRACT: Whereas the role of bronchial smooth muscle remains controversial in healthy

subjects its role is well established in asthmatics. Bronchial smooth muscle contraction induces

airway narrowing. The smooth muscle also contributes to bronchial inflammation by secreting a

range of inflammatory mediators, recruiting and activating inflammatory cells, such as mast cells

or T-lymphocytes. In addition, bronchial smooth muscle mass is significantly increased in asthma.

Such an increase has been related to a deposition of extracellular matrix proteins, and an increase

in both cell size and number. However, the mechanisms of this smooth muscle remodelling are

complex and not completely understood. The article will review recent data regarding the

pathophysiology of bronchial smooth muscle remodelling in asthma.
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A
sthma is a chronic inflammatory disease,
characterised by the association of bron-
chial hyperresponsiveness, inflammation

and remodelling [1–3]. Current medications are
effective in treating acute airway narrowing and
decreasing inflammation but are relatively less
effective in preventing chronic structural changes
[4]. Bronchial remodelling is described as an
increased thickening of the bronchial wall due to
various structural alterations including: abnor-
mal epithelium; sub-epithelial membrane thick-
ening; alteration in extracellular matrix (ECM)
deposition; neoangiogenesis; mucus gland hyper-
trophy; and an increased bronchial smooth
muscle (BSM) mass (fig. 1). The latter appears
to be the most important feature of bronchial
remodelling since increased BSM mass is asso-
ciated with a decrease in lung function in severe
asthma [5, 6]. However, major anti-asthmatic
treatments, such as corticosteroids, remain totally
ineffective in decreasing BSM mass [4]. As a
result, innovative treatments such as bronchial
thermoplasty [7, 8] aim to target BSM.

The physiological role of BSM remains contro-
versial. BSM is known to contribute to the normal
branching of the respiratory tree during lung
embryogenesis [9, 10]. In healthy subjects, BSM
may play a role in co-ordinating the distribution
of ventilation within the airways [11, 12], in
mucus propulsion [13] or in helping exhalation
[14]. However, these potential roles have not
been experimentally validated. MITZNER [15]

suggested that BSM is vestigial and has no
physiological function, stating that BSM is ‘‘the
appendix of the lung’’. Paradoxically, the patho-
physiological role of BSM in asthma is well
established. BSM is the main effector of bronchial
contraction in response to various stimuli,
including inflammatory mediators. Moreover,
BSM has also been considered as an inflamma-
tory cell per se [16]. It can contribute to an auto-
activation loop involving mast cells and implicat-
ing the production of cytokines [17]. Upon
stimulation, BSM cells produce a wide range of
cytokines and chemokines including CXCL10 (IP-
10) and CX3CL1 (Fraktalkine), which participate
in this auto-activation loop [18, 19]. As a result,
mast cells are attracted by BSM and preferentially
infiltrate the BSM layer of both fatal and nonfatal
asthmatics [20, 21]. As part of this auto-activation
loop, mast cells can adhere to BSM cells [2, 22,
23], promoting both survival and proliferation of
mast cells [24]. Mast cell activation and degranu-
lation can be allergen dependent or independent
[25–28], and can be responsible for an important
extracellular deposition of inflammatory pro-
ducts that may facilitate the increase in BSM
mass, as well as bronchial hyperresponsiveness
[16, 29, 30]. T-lymphocytes may also participate
in BSM remodelling. LAZAAR et al. [31] demon-
strated that the adhesion of T-lymphocytes to
BSM cells induced BSM cell DNA synthesis.
More recently, this increased BSM proliferation
was related to a direct contact between activated
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CD4+ T-cells and BSM cells using cells from a rat experimental
model of asthma [32].

Bronchial chronic asthmatic inflammation causes tissue inju-
ries leading to repetitive repair processes. Remodelling was
initially thought to be the consequence of an incomplete repair
process in asthma [33]. However, the early onset of this process
[34, 35] sometimes before eosinophilic inflammation [36]
suggests that bronchial inflammation and remodelling may
occur simultaneously in asthma. BSM remodelling is char-
acterised by an increased deposition of ECM proteins in and
around the BSM bundles, an increased BSM cell size or
hypertrophy, and an increased BSM cell number or hyperpla-
sia (fig. 2). The aim of our article is to review recent data
regarding these specific aspects of the pathophysiology of BSM
remodelling in asthma.

ALTERED ECM WITHIN THE SMOOTH MUSCLE LAYER
There is a growing body of evidence indicating that the BSM
ECM is altered in asthma [29, 37–39]. Indeed, ECM is increased

around each individual BSM cell within the muscle bundles
[37], by large bland amount of protein deposits [29]. Such an
increased ECM contains a higher amount of collagen [38] and
both fibronectin and elastic fibres, although the latter has only
been found within the BSM from fatal asthma [39]. Several of
these characteristics have been described in both large and
small airways [39]. Cultured human nonasthmatic BSM cells
produce a wide range of matrix proteins, including fibronectin,
perlecan, elastin, laminin, thrombospondin, chondroitin sul-
fate, collagen I, III, IV and V, versican and decorin [40].
Interestingly, asthmatic BSM cells produce an altered profile of
ECM proteins in vitro, characterised by more collagen I and
perlecan, but less laminin-a1, collagen IV [41] and hyaluronan
[42]. Such an altered ECM production by BSM cells could
contribute to the altered ECM composition of the whole asthmatic
bronchial wall. Indeed, asthmatic bronchial ECM is characterised
by an increased amount of collagen I, collagen III and fibronectin
[43–45] and a decreased amount of collagen IV [46]. However,
bronchial ECM also presents higher amount of hyaluronan,
versican, and laminin [43, 47], which may be produced by cells
different from BSM, such as epithelial cells and/or an imbalance
between matrix production and degradation.

The increased ECM deposition may also be due to decreased
matrix metalloproteinases (MMP) or increased tissue inhibitors
of matrix metalloproteinases (TIMP). However, in biopsies
from fatal asthmatics, both MMP-9 and MMP-12 were
increased within the BSM, whereas no change was observed
in the expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 [39].
However, these findings seem to be restricted to fatal asthma
cases since no significant difference has been demonstrated in
the BSM from nonfatal asthmatics [39]. MMP-9 degrades
collagen IV, a major component of the airway sub-epithelial
basement membrane [48], and MMP-12 is implicated in elastin,
collagen IV, fibronectin and laminin digestion [49, 50]. In vitro,
BSM cells from nonasthmatics have been shown to express
only a small amount of MMP-9 but also MMP-2, MMP-3,
membrane type-1-MMP [51]. Nevertheless, the overall BSM
MMP activity remains low due to an excess expression of
TIMP-1 and TIMP-2 [51]. Whether MMP-9 production and
activity can be upregulated under inflammatory conditions
remains unknown. In contrast, MMP-12, which is also
expressed by BSM cells, is upregulated by interleukin (IL)-1b
or tumour necrosis factor (TNF)-a [52], although such
upregulation was not observed in a single report on asthmatic
BSM cells in vitro [52]. Nevertheless, an increased expression of
both MMP-9 and MMP-3 has been found in the bronchoalveo-
lar lavage (BAL) fluid from asthmatics [53] and could be
related to other cell types. For example, eosinophils and
neutrophils are also known to be a major source of MMP-9 [48,
54]. In addition, levels of TIMP-1 are higher in untreated
asthmatics than in treated subjects [55] although the role of
BSM cells in down regulating MMPs by upregulation of TIMPs
in asthma remains to be established.

The increased and abnormal asthmatic ECM could interact
with growth factors. In particular, transforming growth factor
(TGF)-b is stored within the ECM as an inactive form
combined with the latency-associated peptide [17]. Amongst
various enzymes capable of activating TGF-b, MMP-9 releases
the active form of TGF-b [56]. TGF-b is increased within
asthmatic airways [57, 58] and more specifically in the BSM
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FIGURE 1. Representative optic microscopic images from bronchial sections

stained with Haematoxylin, Eosin and safranin stain were obtained from a) a control

subject or b) an asthmatic subject. E: epithelium; G: mucous gland; SM: smooth

muscles. Scale bars550 mm.
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layer [17]. TGF-b induces fibronectin and collagen I deposition
from BSM cells through connective tissue growth factor (CTGF)-
dependent and -independent pathways [59]. Interestingly,
CTEF is increased in asthmatic BSM cells [60]. In addition,
TGF-b, which is secreted by BSM cells after mast cell degranu-
lation, induces mast cell chemotaxis and thus participates in an
auto-activation loop [17].

Finally, ECM proteins may also modulate BSM phenotype, as
well as its functions including contraction, migration and
proliferation [61]. On the one hand, fibronectin reduces both
the contractility and expression of a-actin, calponin and
myosin heavy chain in bovine BSM strips [62]. On the other
hand, laminin increases the contractility of bovine BSM strips
[62], and induces the maturation of human BSM cells into a
contractile phenotype [63]. Conversely, fibronectin enhances
BSM cell proliferation in response to platelet-derived growth
factor (PDGF) or thrombin, whereas laminin decreases BSM
cell proliferation [64]. Thus, asthmatic BSM cells that produce
an altered ECM influence their own environment, and may, as
a consequence, contribute to modulate their own function.

BSM HYPERTROPHY
Whether BSM hypertrophy is present in asthma remains
controversial [29, 65–67]. For some authors, there is evidence
that BSM hypertrophy contributes to airway remodelling in
asthma. EBINA et al. [67] have examined the airways of fatal
asthma, and described two asthmatic subtypes. In particular, the
second subtype includes an increased BSM cell size throughout

the bronchial tree. More recently, BENAYOUN et al. [65] studied
bronchial biopsies and found that patients with asthma had
larger BSM cell diameter compared to control subjects.
Furthermore, severe asthmatics presented the highest BSM cell
size [65]. Interestingly, it has also been shown that asthmatic
BSM hypertrophy was associated with an increased expression
of myosin light chain kinase (MLCK), whereas that of both a-
smooth muscle actin (SMA) and myosin was unchanged [65]. In
addition, using an ultrastructural approach, BEGUERET et al. [29]
also showed an increased BSM cell size in atopic asthmatics.
Conversely, using a three-dimensional approach WOODRUFF et al.
[66] did not find any evidence of an increase in the BSM cell size
in patients with mild-to-moderate asthma. Thus, BSM cell
hypertrophy may be related to asthma severity.

The cellular mechanisms of such BSM cell hypertrophy have
been addressed using nonasthmatic BSM cells only. In vitro,
primary cultured BSM cells obtained from nonasthmatic
donors and even from animals or immortalised human BSM
cell lines have been examined [68–70]. On the one hand, BSM
cell hypertrophy has been reproduced in vitro using serum
deprivation [69] or cell stimulation with TGF-b, endothelin or
cardiotrophin-1 [70–72]. On the other hand, a BSM cell line has
been obtained using a temperature-sensitive simian virus-40
large T-antigen, which binds to and inactivates p53 [68]. In
such a cell line there is an increase in both cell size and amount
of a-SMA and MLCK in a post-transcriptional manner [68].
BSM hypertrophy involved complex transduction pathways
(fig. 3), recently reviewed by BENTLEY and HERSHENSON [73]. As
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FIGURE 2. Mechanisms of asthmatic bronchial smooth muscle (BSM) remodelling. The three main characteristics of BSM remodelling in asthma are presented. BSM

cell hyperplasia can be related to an increased cell proliferation, a decreased cell apoptosis or the recruitment of mesenchymal cells. EMT: epithelial mesenchymal transition;

ECM: extracelluar matrix.
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a summary, two distinct pathways could activate BSM cell
hypertrophy. The first pathway involves the mammalian target
of rapamycin (i.e. mTOR). mTOR induces the phosphorylation
of 4E-binding protein (4E-BP), which releases the transcription
factor eIF4E leading to BSM cell hypertrophy [74]. In addition,
mTOR also phosphorylates p70S6-kinase, which activates S6
kinase [75]. Such a pathway is necessary and sufficient for BSM
cell hypertrophy. In addition, when TGF-b is used to induce
BSM cell hypertrophy in vitro the phosphorylation of 4E-BP
appears to be more phosphatidylinositol 3-kinase (PI3)-kinase-
dependent than mTOR-dependent, whereas that of p70S6-
kinase only requires mTOR activation [70]. The possible
upstream inhibition of mTOR by tuberous sclerosis complex-2
has not been demonstrated in BSM cells but has been
confirmed in other cell types, including HEK293 [76]. The
second pathway involves the inhibition of glycogen synthase
kinase (GSK)-3b, for instance by Akt. GSK-3b usually inhibits
the translation initiation by eIF2B in many cell types [77, 78].
Inhibition of GSK3-b induces BSM cell hypertrophy through an
eIF2B-dependent manner [79]. Furthermore, in a recent in vivo
study using ovalbumin-sensitised mice, BENTLEY et al. [80] have
demonstrated that GSK3-b is phosphorylated and thus
inactivated within the hypertrophic BSM cells. Whether these
transduction pathways are actually implicated in human
asthmatic BSM cell hypertrophy remains to be established
and further studies are needed to explore the involvement of
such pathways in asthmatic BSM cells.

BSM HYPERPLASIA
In contrast to hypertrophy, hyperplasia, i.e. an increased
number of BSM cells within the asthmatic airways, is now

well established [66, 67, 81, 82]. Thus, BSM hyperplasia is an
important feature leading to the increased BSM mass.
Nevertheless, the mechanism responsible for this increased
BSM cell number is still under debate. An increased prolifera-
tion and/or a decreased apoptosis of BSM cells have been
initially suggested. More recently, migration of mesenchymal
cells to the BSM bundles followed by differentiation toward
BSM cells has also been suggested (fig. 2).

BSM cell proliferation
BSM cell hyperplasia has been associated with an increased
proliferation rate in vitro [83]. Indeed, a wide range of mitogens
increases the proliferation of nonasthmatic BSM cells (table 1).
These factors can be separated into several categories including
growth factors/cytokines activating receptor tyrosine kinase
(RTK), inflammatory mediators activating G protein coupled
receptors (GPCR) and enzymes. In addition, reactive oxygen
species (ROS) [98] and mechanical stress [99] have also been
implicated (table 1). The main intracellular pathways of BSM
cell proliferation have been summarised in the recent review of
TLIBA et al. [100]. Briefly, the majority of in vitro studies support
an important role of both PI3K and extracellular signal-
regulated kinase (ERK) activation for both RTK and GPCR.
Indeed, activation of RTK or GPCR induces p21ras activation,
which subsequently activates PI3K and/or ERK. On the one
hand, PI3K activates both PDK-1/p70S6K and Rac1/reduced
nicotinamide adenine dinucleotide phosphate (NADPH)
which increase the expression of cyclin D1 [100, 101]. It should
be noticed that the GTPase protein Rac1 constitutes part of the
NADPH oxidase complex that generates superoxide ion and
hydrogen peroxide [102]. In this connection, serum treatment
of human BSM cells increases intracellular endogenous ROS
[103]. On the other hand, ERK phosphorylates and directly
increases the expression of cyclin D1 [104] in the absence of
endogenous ROS implication [105]. Regarding transduction
pathways involved by exogenous ROS, ERK is activated upon
PKC and Raf1 stimulation [106, 107]. Furthermore, KRYMSKAYA

et al. [108] have demonstrated that GPCR activation by
inflammatory or contractile agonists along with RTK activation
enhances human BSM growth. WALKER et al. [109] have shown
that even if the PI3K pathway is sufficient to stimulate
proliferation, ERK parallel signalling is required to induce a
full mitogenic response. Among the various enzymes able to
induce BSM cell proliferation (table 1) great attention has been
paid to tryptase. Indeed, upon degranulation, mast cell-
released tryptase stimulates BSM cell proliferation and DNA
synthesis [95, 110]. However, the mechanisms of such an effect
remain controversial. BROWN et al. [110] did not find any effect
of tryptase inactivation, suggesting a nonenzymatic effect,
whereas heat inactivation or the enzyme inhibitor leupeptin
abolished tryptase-induced BSM cell proliferation [95]. Thus,
our data suggest an enzymatic effect of tryptase, but the
involvement of protease-activated receptor (PAR)-2, a potential
target of tryptase, has only been demonstrated in tryptase-
induced calcium increase [111, 112]. Therefore, the role of
PAR-2 in tryptase-induced BSM cell proliferation requires
further investigation. Regarding the effect of mechanical stress,
cyclic stretch alters BSM cell proliferation [99]. Indeed, in
canine BSM cells subjected to a stretch–relaxation regimen,
[3H]-thymidine incorporation is increased [99]. More recently,
mechanical strain has been shown to induce human BSM cell
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FIGURE 3. Mechanisms of bronchial smooth muscle (BSM) cell hypertrophy.

Signal transduction mechanisms of BSM cell hypertrophy involve both mammalian

target of rapamycin (mTOR) and glycogen synthase kinase (GSK)-3b. Upstream

and down-stream transduction cascades are presented. R: activation;

–––|: inhibition; ??????: indicates that the transduction pathway has not yet been

demonstrated in BSM cells.
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proliferation in a MMP-dependent manner [113]. Mechanical
stress was accompanied by an increased expression and
activation of several MMPs including MMP-1, MMP-2,
MMP-3 and MT1-MMP, suggesting that such a proliferation
of human BSM cells requires the release and activation of
MMPs [113]. Indeed, mechanical stress is influenced by the
abundance of ECM. HIRST et al. [64] have shown that
fibronectin and collagen I enhance BSM cell proliferation in
response to PDGF or thrombin, whereas laminin causes a
reduction in BSM cell proliferation. All these promoting factors
are increased within the asthmatic airways and can target BSM
cells. Indeed, BAL fluid obtained from asthmatic subjects
induces the proliferation of human BSM cells [114].

In addition to this excess in mitogenic mediators, there is a
growing body of evidence to show that asthmatic BSM cells
have intrinsic properties leading to excessive proliferation.
JOHNSON et al. [115] firstly reported an increased proliferation
rate of cultured asthmatic BSM cells compared to that of
nonasthmatics. Such findings have been confirmed in various
cohorts of patients [4, 116–118] including in severe asthmatics
[81]. Whereas, the proliferation of nonasthmatic BSM cells is
decreased by steroids [119], that of asthmatic BSM cells is
insensitive to steroids [4]. Indeed, glucocorticoids down-
regulate the proliferation of nonasthmatic BSM cells by
decreasing the expression of cyclin D1 and the phosphoryla-
tion of retinoblastoma protein, but have no effect on ERK
signalling [120]. No significant difference in glucocorticoid
receptor expression was found in BSM between mild asthmatic
and nonasthmatic patients [121]. Several studies have pointed
out the role of the transcription factor CCAAT-enhancer
binding proteins (c/EBP). The c/EBPs form a family of
transcription factors involved in the regulation of cellular

differentiation, cell-cycle regulation and cytokine gene expres-
sion [122]. Lack of c/EBPa has been specifically demonstrated
within the asthmatic BSM cells and may explain the absence of
an anti-proliferative action of glucocorticoids [4]. Indeed, the
glucocorticoid receptor usually forms a complex with c/EBPa
in nonasthmatic BSM cells, which then binds to the CCAAT
DNA consensus sequence in the p21 promoter [123]. This
complex is absent in asthmatic BSM cells after glucocorticoid
treatment [4]. In addition, this transcription factor may be
important in other processes, including contractility of BSM
cells, since c/EBPa is a possible negative regulator of MLCK
expression [124].

Although the existence of dual signalling pathways regulating
proliferation of nonasthmatic BSM cells is well established, a
recent study has demonstrated that PI3K is the predominant
pathway leading to proliferation of BSM cells from asthmatic
patients [116]. Furthermore, we have demonstrated that the
mechanism leading to the increased proliferation rate observed
in asthmatic BSM cells was mitochondrial dependent, since
mitochondria-deficient BSM cells from severe asthmatics are
unable to proliferate [81]. Indeed, asthmatic BSM express a
higher number of active mitochondria and a clear aspect of
intense mitochondrial biogenesis, both in vivo and in vitro. This
enhanced mitochondrial biogenesis is induced by the upregula-
tion of peroxisome proliferator-activated receptor-c co-activator
(PGC)-1a, nuclear respiratory factor-1 and mitochondrial
transcription factor A [81]. This feature appears to be respon-
sible for asthmatic BSM cell proliferation, since depleting
mitochondria from BSM cells abolishes the proliferation.
Interestingly, the upstream mechanism is related to altered
calcium homeostasis in severe asthmatic BSM cells leading to
increased phosphorylation of CaMK-IV, which induces the

TABLE 1 Mitogenic factors of human BSM cells

Factors Cellular sources [Ref.]

Growth factors/cytokines

PDGF Platelets, monocyte-macrophage, BSMC, epithelium [84]

FGF Extracellular matrix, monocyte-macrophage, BSMC [85]

EGF Epithelium, platelets [86]

TNF-a BSMC, epithelium, T-lymphocytes, monocyte-macrophage [87]

TGF-b (controversial) BSMC, T-lymphocytes, epithelium [88, 89]

Inflammatory mediators

Histamine Mast cells, basophils [90]

Endothelin-1 Epithelium, monocyte-macrophage [91]

Thromboxane A2 Mast cells, monocyte-macrophage [92]

Cysteinyl leukotriene Monocyte-macrophage, eosinophils, mast cells, fibrocytes [93]

Sphingosine 1-phosphate Plasma, platelets [94]

Enzymes

Tryptase Mast cells [95]

Thrombin Plasma [96]

Elastase Neutrophils [97]

Reactive oxygen species Monocyte-macrophage, neutrophil, eosinophils, mast cells [98]

Mechanical stress [99]

PDGF: platelet-derived growth factor; FGF: fibroblast growth factor; EGF: epidermal growth factor; TNF: tumour necrosis factor; TGF: transforming growth factor; BSMC:

bronchial smooth muscle cells.
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transcription of PGC-1a [81]. Such an altered calcium home-
ostasis has also been observed very recently in nonsevere
asthmatics [118], although the mechanism appeared to be
different according to asthma severity. In severe asthmatic
BSM cells, the proliferation has been related to an abnormal
calcium influx [81], whereas in nonsevere asthmatic BSM cells, a
diminished expression of SERCA2 has been demonstrated [118].
In addition, knocking down SERCA2 in healthy BSM cells
reproduced this enhanced proliferation rate [118]. Thus,
transduction pathways leading to the proliferation of asthmatic
BSM cells seems to depend on the severity of the disease.
However, further studies need to address whether or not the
increased mitochondrial biogenesis and altered Ca2+ home-
ostasis can be related to exogenous factors such as those secreted
by inflammatory cells.

Finally, to date no feature of BSM cell mitoses has been observed
in human asthmatic tissues, using either Ki67 or proliferating
cell nuclear antigen (PCNA), two markers of nuclear antigen
expressed by proliferating cells [29, 65]. Nevertheless, the lack of
Ki67 or PCNA staining within the asthmatic BSM does not
formally exclude the absence of cell proliferation. Indeed,
increased proliferation may have occurred before biopsy, as
already suggested [125]. In addition, these markers may be
poorly sensitive for BSM cell proliferation. In contrast, BSM
hyperplasia may be related to a decreased apoptosis or the
migration of BSM cells and/or mesenchymal cells.

BSM cell apoptosis
To date, little is known about the cellular mechanisms of
apoptosis in asthmatic BSM cells. Besides, most of the current
knowledge has only been established using nonasthmatic BSM
cells. As for hypertrophy, either primary cultured BSM cells
obtained from patients undergoing lung resection surgery [71,
126–128] or BSM cell line have been investigated [72]. In these
healthy BSM cells, Fas receptor is expressed both in vivo and in
vitro and its cross linking induces cell apoptosis [126],
suggesting that it may participate in normal BSM cell turn
over. Moreover, neutrophil elastase [127] and the ECM protein
decorin [128] also induce BSM cell apoptosis in vitro.
Interestingly, a decreased expression of decorin was demon-
strated within the bronchial wall of fatal asthmatics [129].
Additionally, both cardiothrophin-1 [72] and endothelin-1 [71]
inhibit BSM cell apoptosis. However, the role of these
mediators in asthmatic BSM cell apoptosis requires further
investigations.

Few studies have evaluated the susceptibility of BSM cells to
apoptosis in asthma and their findings remain controversial.
RAMOS-BARBON et al. [32] have demonstrated decreased BSM cell
apoptosis in vivo in a rat model of experimental asthma.
Conversely, spontaneous apoptosis was unchanged within
asthmatic BSM cells in vitro [81, 130]. In addition, the in vivo
expression of the TRAIL receptor, a member of the TNF-a
receptor family was increased following allergen challenge in
asthmatic BSM, suggesting that apoptosis may occur in asthmatic
BSM [131]. Therefore, further studies are required to establish
whether or not BSM cell apoptosis is actually altered in asthma.

Migration of BSM cells
Migration of BSM cells is a fundamental process in the
development of the airways [132]. Thus, it has been suggested

that such a migration may participate in BSM remodelling in
asthma [133]. Cellular migration is characterised by cytoske-
letal reorganisation starting by actin polymerisation, as was
recently reviewed by GERTHOFFER [132]. Briefly, actin filaments
push the cell’s leading front using focal contacts, enhancing
attachment of the cell membrane to the ECM. These focal
contacts include integrins, adaptor proteins such as vinculin,
regulatory proteins such as Src and proteins controlling
myosin activation such as MLCK. Indeed, myosin motors
attached to actin filaments generate the force for advancing
cells [132].

A wide range of mediators induce BSM cell migration in vitro
[134, 135]. These mediators include growth factors such as
PDGF, fibroblast growth factor, TGF-b, plasma-derived med-
iators such as plasminogen activators, urokinase, cytokines
such as IL1-b [134, 135] and components from ECM including
collagen and fibronectin [136]. In addition, chemokines also
induce BSM cell migration. For example, CCR3 ligands such as
eotaxin (i.e. CCL11) [137], CXCR1 and CXCR2 ligands such as
IL-8 (i.e. CXCL8) [138] and CCR7 ligands such as macrophage
inflammatory protein-3b (i.e. CCL19) [139] all induce the
migration of nonasthmatic BSM cells in vitro. The epithelium
is a significant source of these pro-inflammatory molecules and
it has been very recently shown that epithelium-derived
chemokines (IL-8 and RANTES) induce human BSM cell
migration [140]. In addition, BSM cell production of MMP
and its modulation by pro-fibrotic growth factors PDGF and
TGF-b may contribute to the migratory function of BSM cells
[141]. Several studies have shown that the signalling pathways
involved in BSM migration include p38, MAPK, Rho-kinase
and PI3K [132, 134]. However, whether or not asthmatic BSM
cells migrate more or less than nonasthmatic BSM cells remains
unknown.

Migration of myofibroblasts
A feature of asthmatic bronchial remodelling is the appearance
of myofibroblasts within the lamina reticularis, in particular
after allergen challenge [142]. Myofibroblasts have been
detected between BSM bundles from asthmatics, close to mast
cells [29]. Myofibroblasts are thought to originate from resident
fibroblasts [143], circulating fibrocytes [144] or from epithelial
cells that have undergone transition into mesenchymal cells
[145]. Another possibility is that myofibroblasts derive from
migrated BSM cells, as previously demonstrated in vascular
smooth muscle [146]. Moreover, TGF-b-stimulated myofibro-
blasts from asthmatic subjects produce many smooth muscle-
related transcripts, suggesting that myofibroblasts may also
differentiate into BSM cells [147]. Myofibroblasts could, there-
fore, be viewed as precursors of BSM cells or the result of a
dedifferentiation process of the BSM cells. Furthermore, it may
be suggested that BSM cells degrade surrounding ECM and
migrate from their original bundles towards the epithelium to
eventually form new bundles [113].

In this field of BSM hyperplasia, the role of circulating
fibrocytes has recently been examined [148]. These cells derive
from the bone marrow and can be quantified in the blood
using flow cytometry [144, 149]. Indeed, fibrocytes co-express
CD34, vimentin, CD45 and collagen Ia [149]. More recently,
WANG et al. [150] demonstrated an increase in blood non-
adherent-fibrocytes from asthmatic patients with chronic
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airway obstruction compared to those with normal lung
function. This increase was significantly correlated with an
annual decline in forced expiratory volume in 1 s, suggesting
an important role of fibrocytes in bronchial remodelling.
Attraction of fibrocytes to the lung seems to implicate the
coupled chemokine/receptors such as CXCL12/CXCR4,
CCL19/CCR7 and CCL21/CCR7. To a lesser extent, fibrocyte
migration could also involve CCL-5, CCL-7, CCL-8, CCL-11,
CCL-13, CCL-15/CCR3, CCL-3, CCL-4, CCL-5/CCR5 and
CCL12/CCR2, although the latter has only been implicated
in mice [151]. Furthermore, fibrocytes can differentiate into
myofibroblasts, as indicated by the expression of a-SMA [144,
150]. This phenomenon could be induced by TGF-b and is
more marked in asthmatics with airway obstruction [150]. As a
result, the presence of fibrocytes has been confirmed within the
asthmatic airways [144] and more precisely within the BSM
bundles [148] or close to the basement membrane [152]. In
addition, allergen exposure induces accumulation of fibrocyte-
like cells within the bronchial mucosa of allergic asthmatic
patients [144]. Moreover, NIHLBERG et al. [152] showed that
fibroblasts cultured from BAL fluid in patients with mild
asthma express fibrocyte proteins, suggesting that fibroblasts
derive from circulating fibrocytes. The co-expression of a-SMA
in fibrocyte-derived cells suggests that circulating progenitor
cells differentiate into myofibroblats and then into BSM cells
[148]. Finally, BSM cells themselves may promote fibrocytes
migration, which is, in part, mediated by the production of
PDGF [148].

Another recent concept suggests that myofibroblasts derive
from epithelial cell transition to a mesenchymal phenotype
[153, 154]. However, this epithelial mesenchymal transition
(EMT) remains hypothetical in the genesis of BSM cells and has
been mainly studied as a mechanism of fibroblast or
myofibroblast generation [153, 154]. For instance, TGF-b
induces EMT in a smad3-dependent manner using human
bronchial epithelial cells [155]. EMT is characterised by an
increased expression of mesenchymal markers such as
vimentin, collagen 1 and a-SMA, with a concomitant loss of
epithelial markers such as E-cadherin [155]. Furthermore,
TGF-b-induced EMT is enhanced by IL-1b in human bronchial
epithelial cells [156]. Interestingly, airway epithelial cells from
asthmatic donors present a similar response to TGF-b stimula-
tion, whereas no marker of EMT is spontaneously observed in
asthmatic bronchial epithelium [155]. In addition, corticoster-
oids do not prevent TGF-b-induced EMT but decrease it [156].
Furthermore, bronchial epithelium modulates BSM cell pro-
liferation through an IL-6 and MMP-9-dependent mechanism
[157]. Silencing of MMP-9 abrogates the epithelium-dependent
increase in BSM cell proliferation. Finally, epithelial injury
increases the release of MMP-9 and the expression of Ki67
levels in human BSM cells [157], suggesting that epithelium
and BSM strongly interact in asthma.

BSM-EPITHELIUM INTERACTIONS
Finally, BSM remodelling must be replaced in the context of
other features of asthmatic bronchial remodelling. In particu-
lar, bronchial epithelial abnormalities have been extensively
studied in asthma [158]. Theses abnormalities include the loss
of the most superficial layer of the epithelium and the
destruction of ciliated cells. As a result, the physical and

functional barrier of the bronchial epithelium is defective in
asthma. This may explain the susceptibility of asthmatic
airways to respiratory viruses or the impact of environmental
factors on asthma exacerbations [159]. For instance, within
rhinovirus infections, epithelial cells induce the desensitisation
of the b2-adrenergic BSM cell receptor [160]. BSM epithelial cell
co-culture models have also been developed to evaluate BSM-
epithelium interactions in vitro [140, 157]. Bronchial epithelium
in injury modulates BSM cell proliferation through an MMP-9
dependent pathway [157]. However, other epithelium-derived
growth factors can also increase BSM cell proliferation
(table 1). In addition, upon stimulation with TNF-a, bronchial
epithelial cells produce higher amount of chemokines, such as
IL-8 or RANTES, which subsequently induce BSM migration
[140]. However, comprehensive relationships between bron-
chial epithelium and BSM remain to be investigated, particu-
larly in asthma.

CONCLUSION
In conclusion, a better understanding of the pathophysiology
of asthmatic BSM remodelling is critical to identify new
therapeutic targets for BSM remodelling. For example, since
mitochondrial biogenesis is implicated in BSM remodelling we
have proposed a strategy directed against mitochondria to
block BSM cell proliferation [81]. Along the same lines, since
endothelin and TGF-b have been evoked in the mechanism of
BSM cell hypertrophy, it may be interesting to investigate the
effect of endothelin- or TGF-b-receptor antagonists in asthma
as already assessed in pulmonary vascular diseases in human
[161] or murine models of asthma [162]. More recently,
simvastatin has been demonstrated to induce BSM cell
apoptosis in vitro [163] but, results from clinical trials remain
controversial in asthmatics [164]. Another strategy could focus
on the migration of fibrocytes by means of chemokine receptor
blockage. Finally, reducing BSM mass may also be achieved by
targeting epithelial cells. These targets should now be
evaluated by means of clinical trials that may take advantage
of newly developed noninvasive tools to quantify BSM
remodelling [165–167].
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