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REVIEW

lonic mechanisms and Ca®* handling in
airway smooth muscle

S. Hirota, P. Helli and L.J. Janssen

ABSTRACT: Asthma is a disease characterised by reversible contraction of airway smooth
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muscle. Many signalling pathways are now known to underlie that contraction, almost all of which
revolve around Ca®* handling. Ca®>" homeostasis in turn is governed by a wide variety of ionic

mechanisms, which are still poorly understood. The present review will briefly summarise those
mechanisms that have been recognised for decades, but will then devote considerable attention
to several novel ionic signalling mechanisms such as capacitative Ca®* entry, the reverse mode of
the Na‘'/Ca®" exchanger, the role of CI" channels in the release of internal Ca®>" and that of
ryanodine receptors in the refilling of the sarcoplasmic reticulum, as well as the regulation of the
monomeric G-protein Rho by ionic mechanisms. Lastly, evidence will be provided that Ca®'-
dependent contraction may be driven by spatial and temporal heterogeneities in the intracellular
CaZ" concentration (i.e. Ca%* waves/oscillations) rather than by an increase in the global steady

state intracellular Ca%* concentration.
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sthma is characterised by variable
A increases in airway resistance.

Irrespective of the aetiology of this dis-
ease, inappropriate contraction of the smooth
muscle of the airways is a major factor that
contributes to the increase in resistance. Thus,
understanding the mechanisms surrounding
force generation in airway smooth muscle
(ASM) is paramount in the quest for novel
treatments for this and many other respiratory
diseases.

Advances in the understanding of excitation—
contraction (EC) coupling in ASM have borrowed
from work carried out using other muscle
preparations (usually vascular smooth muscle
or even skeletal/cardiac muscles). In some
respects this is justified, given the similarities
between these different cell types. However, a
growing body of literature attests to the marked
differences between ASM and those other cell
types, as previously reviewed by JANSSEN [1].
Thus, in order to accurately understand ASM
physiology, it is important to synthesise and
integrate data collected specifically from ASM
and not to rely on findings made in cardiac or
vascular smooth muscle, as so often seems to be
the case.
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The present review will begin with a brief
presentation of the generally accepted working
knowledge of EC coupling in ASM, focusing on
Ca**-dependent contractions that are triggered
following agonist stimulation. In addition to the
traditional mechanisms governing Ca** handling
in ASM, evidence of other events which have
been uncovered more recently in ASM will be
summarised, such as capacitative Ca** entry and
the reverse mode of the Na'/Ca®" exchanger
(NCX), which may contribute to agonist-induced
elevations in intracellular Ca®" concentration
([Ca®y). Lastly, evidence will be provided that
Ca**-dependent contraction may be driven by
spatial and temporal heterogeneities in [Ca®'];
(ie. Ca*" waves/oscillations) rather than an
increase in the global steady state [Ca®"]..

OVERVIEW OF EC COUPLING IN ASM

The contractile apparatus consists of actin and
myosin filaments and accessory and regulatory
proteins. During excitation, phosphorylation of
the light chain of smooth muscle myosin by
myosin light chain kinase (MLCK) leads to
enhancement of its intrinsic adenosine triphos-
phatase (ATPase) activity and subsequent
mechanical interactions with actin. This results
in the sliding of the myosin molecule along the
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actin filament. The details of this complex interaction are
beyond the scope of the current discussion, but have been
reviewed elsewhere [2]. MLCK is activated by the Ca%"/
calmodulin complex: thus, Ca%t plays a key and central role in
EC coupling in ASM (fig. 1). A great many ionic events within
the ASM cell culminate in changes in [Ca®'];, as outlined
below. It will first be described how [Ca®']; is maintained at, or
restored to, resting levels through the actions of several Ca**
pumps and exchangers (see Ca®" homeostasis: Ca>* pumps and
exchangers section). Next, it will be examined how [Ca®"]; is
elevated through the release of internally sequestered Ca®" (see
Release of internally sequestered Ca®" section) as well as the
influx of external Ca®" across the membrane (see Voltage-
dependent influx of external Ca** and Voltage-independent
influx of Ca®" sections); the latter will necessitate a brief
diversion in order to explore a variety of other ionic events and
mechanisms that contribute to Ca®* influx via voltage-gated
Ca”" channels (VGCC; see Voltage-dependent Ca*" influx
section). Finally, some very recent work will be summarised
describing how these mechanisms have been assembled and
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IONIC MECHANISMS IN ASM

integrated into very elaborate yet fundamental cell functions
(see Novel mechanisms section).

Several other signalling pathways involved in mediating
contraction will not be discussed in the present review. Some
of these involve a change in Ca®" sensitivity of the contractile
apparatus via a suppression of myosin light chain phosphatase
(MLCP) activity, mediated by RhoA-associated kinase or by
protein kinase (PK)C. Excellent reviews have been provided by
SOMLYO and SOMLYO [3]. Alternatively, others have described
contractions that are Ca** independent, and indeed that appear
to be independent of ionic mechanisms in general, and these
will also not be considered in detail in the present review,
although excellent reviews have been given by GUNST and co-
workers [4, 5].

Ca®>" HOMEOSTASIS: Ca** PUMPS AND EXCHANGERS

In general, [Ca?"]; is maintained at low levels by: 1) extrusion
of Ca** from the cytoplasm via a Ca** ATPase and the NCX on
the plasmalemma; 2) sequestration of Ca*" into intracellular

SR refilling Relaxation

Myosin \—//,
4 > MLCK

FIGURE 1. Oveniew of ionic pathways in airway smooth muscle. Fluxes of Ca®* (blue), CI" (red), Na* (green) and K* (pink) during excitation, refilling of the sarcoplasmic
reticulum (SR) and relaxation. Details of these fluxes are given within the text. AV: change in membrane potential; ACI: change in [CI]; ACa: change in [Ca®*]. NSCC:
nonselective cation channel; ROCK: Rho-associated kinase; MLCP: myosin light chain phosphatase; MLCK: myosin light chain kinase; Myosin-P: phosphorylated myosin;
IP3: inositol-1,4,5-trisphosphate; IP5-R: IP3 receptor; DAG: diacylglycerol; RyR: ryanodine receptor. Truncated arrows indicate inhibition.
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organelles; and 3) buffering of [Ca*];

Ca”*-binding proteins (fig. 1).

by various cytosolic

Several organelles are known to sequester Ca®*, including the
sarcoplasmic reticulum (SR), mitochondria and the nuclear
envelope [6, 7]. Of these, the SR is widely agreed to play the
major role in regulating contractile function in ASM. The
mitochondria seem to play a supportive or modulatory role in
the regulation of [Ca%"]; in vascular smooth muscle, but this
has not been adequately investigated in ASM [6, 8]. There is
widespread agreement that sarco-endoplasmic Ca** ATPase
(SERCA) plays a key role in maintaining resting [Ca®'];
because blockers purported to be selective for this enzyme,
such as cyclopiazonic acid (CPA) or thapsigargin (TG),
typically evoke a rise in [Ca®']; and contractions. This suggests
that there is a constant “leak” of Ca** out of the SR that is
driven by the tremendous concentration gradient across the SR
membrane (10,000-fold, comparable to that existing across the
plasmalemma). Inhibition of SERCA leads to functional
depletion of the SR, indicated by loss of the Ca**-transient or
Ca**-dependent membrane currents in response to cholinergic
stimulation [9, 10]. This Ca*" leak may account, in part, for the
spontaneous Cl' currents (spontaneous transient inward
currents) and K" currents (spontaneous transient outward
currents (STOCs)) recorded in ASM [11-15].

Some extrusion pathway must also be involved in Ca*

homeostasis; otherwise, the internal Ca** pool would even-
tually become overloaded. The ubiquitous plasmalemmal
pump, termed the plasma membrane Ca®*" ATPase (PMCA),
is most probably involved, although there are no selective
blockers or knock-out models available to test this hypothesis.
Ca?* can also be extruded via the NCX, which uses the energy
resident within the Na® gradient to move Ca”" against its
electrochemical gradient, extruding one Ca** ion in exchange
for three Na*. NCX appears to be important in ASM of some
species such as the cow [16], pig [17] and guinea pig [18], but
apparently not at all in that of the dog [19]. The ability of NCX
to operate in a capacity of Ca** extrusion is widely and easily
accepted; however, under certain conditions it can equally
operate in the reverse, CaZ*-influx, mode (see NCX and Ca%*
store refilling section).

RELEASE OF INTERNALLY SEQUESTERED Ca**

Activation of the contractile apparatus in ASM is initiated by
agonist-induced mobilisation of internally sequestered Ca*
from the SR. G-protein-coupled receptor (GPCR)-mediated
activation of phospholipase C triggers the cleavage of
membrane-bound phosphatidylinositol-4,5-bisphosphate, lib-
erating inositol-1,4,5-trisphosphate (IP3), which in turn acts on
specific ligand-activated Ca®" channels on the SR (IP;
receptors). There are three subtypes of IP; receptor which
differ in their gating kinetics: although there have been many
descriptions of IP;-induced release of Ca®" in ASM [20-23], the
subtype(s) present and/or involved in ASM are as yet unclear.
IP; receptors are also regulated by autacoids other than IP;.
When [Ca®'] at the cytosolic face of the TPs-receptor rises into
the micromolar range, the channel enters an inactivated state
[24, 25], a property which is generally deemed to be important
in explaining repetitive Ca®" waves (see Ca>' oscillation
frequency determines contractile function section). Its activity
is also modulated by phosphorylation of the receptor/channel
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by several different kinases, including PKA and PKC. As in
other cell types, these IP; receptors are inhibited by xestos-
pongins, 2-aminoethoxydiphenyl-borate (2-APB) or heparin.

The SR also expresses another class of Ca?* channel, referred to
as the ryanodine receptor (RyR) because of its sensitivity to
certain plant alkaloids. Once again, there are three subtypes of
RyR. Using the experimental tools currently available, it would
appear that human ASM expresses only RyR3 and not the
other two subtypes [26], while RyR1 and RyR2 were found in
rat ASM [27] and all three subtypes were found in murine
ASM [28]. Even more interestingly, in the latter study, RyR1
were localised towards the periphery of the cells whereas RyR3
were more centrally located around the nucleus [28]. Such
regiospecific heterogeneity would hint at physiologically
important mechanisms (discussed later on and in the
Transition from pharmacomechanical coupling to electrome-
chanical coupling section). The endogenous ligand for the RyR
is debated, with many proposing it to be cyclic ADP ribose [29-
33], perhaps acting through FK506 binding protein of 12.6 kDa
[31]. The RyR also shows substantial sensitivity to [Ca%'];,
being enhanced by a range of [Ca®"]; above baseline (a
phenomenon referred to as Ca**-induced Ca®" release, or
CICR) and then suppressed as [Ca®']; rises into potentially
cytotoxic ranges [7, 34-36]. Caffeine, a pharmacological tool
often used to evoke Ca®* release, acts by enhancing the Ca**
sensitivity of the RyR such that basal levels of [Ca*']; are
sufficient to trigger CICR [36]. Ryanodine, on the other hand,
has several binding sites on the RyR with widely ranging
affinities: relatively low concentrations of ryanodine bind to
high-affinity sites which lock the RyRs in a subconductance
state (leading to Ca®" release), whereas higher concentrations
bind to other sites and completely block Ca®* conduction [36].
RyRs are also regulated by endogenous signalling pathways,
generally via phosphorylation by Ca**/calmodulin-dependent
kinase II or PKA [35, 36].

In many nonairway smooth muscle cell types, RyRs contribute
to contraction through CICR [7], or to relaxation of vascular
smooth muscle through activation of Ca**-dependent K*
channels [37]. The potential role of the RyR in ASM, on the
other hand, is less clear. They are certainly functionally active:
the RyR agonist caffeine typically evokes reproducible Ca*"
transients which are sensitive to SERCA inhibitors as well as to
high concentrations of ryanodine [9-11, 26, 38, 39] or
anaesthetics [26]. However, agonist-evoked contractile
responses in ASM show differential sensitivity to high
concentrations of ryanodine: those in the airways of the mouse
[28, 38, 39], rat [27] and dog [40] are suppressed, while in the
airways of the human [26] and cow (unpublished data) they
are not affected. This species-related difference may be due to
the differential expression patterns (subtypes and regional
heterogeneity) mentioned above. Conversely, relaxations in
ASM evoked by p-agonists or nitric oxide donors are not
inhibited by ryanodine (unpublished data). The current
authors have hypothesised that RyRs function to discharge
an overloaded Ca”" store (see Superficial buffer barrier section
and fig. 1). This could account not only for the spontaneous
transient currents mentioned above, but also for the observa-
tion that interleukin-4 inhibits cholinergic responses by
activating RyRs and depleting the SR [41].
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VOLTAGE-DEPENDENT INFLUX OF EXTERNAL Ca**

The role for VGCCs in ASM is puzzling. Several lines of
evidence suggest that they play a similar role in ASM as they
do in other cell types. For example, many types of ion channels
are involved in regulating membrane potential (Vm) at rest (see
Resting membrane potential section) and in the generation of
electrical slow waves (see Voltage-dependent Ca”" influx
section); also, many bronchoconstrictors trigger membrane
depolarisation (see Agonist-evoked membrane depolarisation
section), while bronchodilators can cause membrane hyperpo-
larisation. Thus, it would seem self-evident that Ca®* channels
play an important role in EC coupling in ASM, just as they do
in other smooth muscle cell types. While this may be true
under certain experimental conditions (see Transition from
pharmacomechanical coupling to electromechanical coupling
section), it is important to note that this is generally not true
under normal physiological conditions: release of internally
sequestered Ca®* alone is sufficient to mediate the contractile
response, as attested to by the persistence of contraction during
exposure to blockers of the Ca®* channels, removal of external
Ca®!, or during voltage-clamp at Vm at which the Ca®*
channels are not active [1, 9, 42-44]. Conversely, the present
authors’” group and others have shown dihydropyridine-
sensitive Ca®* channels to play an important role in the
refilling of the internal Ca®" store [9, 45-48].

Resting membrane potential

Resting membrane potential (VR) in ASM does not correspond
to the equilibrium potential of any single ion species. For
example, VR ranges from -70- -30 mV, while the equilibrium
potential for potassium (EK) is ~ -80 mV, that for chloride
(ECl) ranges from -33- -6 mV [49, 50], and those for Na* and
Ca®" are in the very positive range (fig. 2). This would suggest
that VR is determined by membrane permeability to more than
one ion. The fact that VR is intermediate between EK and the
equilibrium potentials for all other ions suggests that K*
conductances must contribute to VR. Consistent with this,
blockade of K' channels using nonspecific blockers such as
tetraethylammonium (TEA), Ba*!, or Cs* leads to membrane
depolarisation and contraction [51]. The specific type of K*
channel involved in setting VR is largely the voltage-dependent
“delayed rectifier” subtype [52-54]. Maxi-K channels are
unlikely to be active at VR and resting levels of [Ca*'];. Most
studies show that blockade of large-conductance Ca**-sensitive
K" (KCa) channels (e.g. using charybdotoxin or iberiotoxin) has
no effect on VR or resting tone [55-57], but there are exceptions
[58]. In addition, STOCs are not recorded until Vm exceeds
-30- -40 mV in the smooth muscle cells of canine [13], guinea
pig [13, 15] and porcine [59, 60] airways. Small-conductance
KCa channels have been shown to be active at VR and may
account for the depolarisation evoked by high concentrations
of TEA; however, some find apamin has no effect on VR [61].
Adenosine triphosphate-sensitive K* channels are clearly not
involved in setting VR, since resting potential and tone are
unaffected by glibenclamide [52, 62, 63].

With respect to the contribution to VR made by other ion
conductances, recent evidence of a tonic CI” conductance in
ASM has been presented. For example, in isolated strips of
canine tracheal ASM, replacement of external CI° with the
impermeant anion isethionate (which would shift ECl in the
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FIGURE 2. Ionic currents in airway smooth muscle as a function of membrane
potential. The fractional magnitude of a given current at any membrane potential is
reflected in the width of the bar at that potential: the reversal potential or equilibrium
potential is found at the point where the bar reduces to a point. Note the
physiologically relevant range of membrane potentials (bounded by the reversal
potentials for nonselective cation current and K* currents), as well as the range in
which the membrane tends to undergo slow wave activity (in which voltage-
dependent Ca®* and CI" currents are found and in which Na*/Ca?* exchanger
oscillates between forward and reverse modes).

positive direction) elicits membrane depolarisation and
increases electrotonic potentials [64]. The current authors
have described spontaneous CI' currents at Vm ranging
-100- +50 mV [11, 13, 14]. Thus, VR should be found some-
where between ECI (in smooth muscle, ECl ranges from
-33- -6 mV; [49, 50]) and EK (~ -80 mV).

With a 10,000-fold concentration gradient tending to move
Ca®" into the cell, even a minute permeability to Ca** can lead
to a significant Ca®" influx, which will tend to depolarise the
membrane. Many studies have indeed provided evidence of a
persistent influx of Ca®" across the membrane: for example,
decreasing external [Ca®"] causes [Ca*']; to drop [65]. The
voltage-activation and -inactivation properties of VGCCs in
some ASM preparations are such that there can be a persistent
Ca®" influx or “window current” at membrane potentials
ranging from -40-0 mV (see Voltage-dependent Ca®" influx
section). The possible contribution of voltage-independent
Ca*" channels will also be discussed in the Voltage-indepen-
dent influx of Ca*" section.

Agonist-evoked membrane depolarisation

Many agonists that evoke bronchoconstriction also depolarise
the ASM cell membrane into the range of potentials at which
VGCCs begin to activate (see Voltage-dependent Ca®* influx
section). In human, canine, guinea-pig and equine ASM, a
wide variety of spasmogens evoke inward current of up to
several thousand pA at VR [9, 11, 12, 66, 67]; this current
reaches a peak within a few seconds, then decays back to
baseline levels in the continued presence of the agonist and is
sometimes followed by a series of smaller secondary inward
currents [11, 13]. A variety of pharmacological tools and
electrophysiological strategies have since revealed that this net
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inward current represents a mixture of conductance changes.
Initially, there is a net decrease in membrane resistance [11],
suggesting opening of ion channels: in all ASM preparations
studied to date, these largely comprise Ca2+-dependent Cr
channels [11, 12, 59, 60, 66-68]. In some species, this is
accompanied by a more sustained activation of nonselective
cation channels (NSCCs) [11, 69]. These changes are then
followed by a prolonged suppression of outward K" currents
[11, 56, 70, 71]. Altogether, the transient activation of CI” and
NSCC currents leads to a displacement of the Vm towards the
reversal potentials of those two currents (-30 and 0 mV,
respectively), while the decreased K* conductance decreases
the strong hyperpolarising influence of EK (EK= -80 mV).
During maximal excitation, the sum total of these changes is a
depolarisation to ~-40 mV, often with minor oscillations or
“slow waves”’ around that level (described in more detail in
the Electrical slow waves section). The current authors would
argue that the role of this net change in membrane con-
ductance is not to depolarise the Vm into a range that
maximally stimulates VGCCs (+20 mV; see Voltage-dependent
Ca®" influx section), but rather to effectively maintain the Vm
around -40 mV, which is optimal for a persistent low level of
voltage-dependent Ca®" influx (“window current”; see
Voltage-dependent Ca*" influx section) and for Ca*" entry via
the reverse-mode NCX (as argued in subsection entitled NCX
and Ca®* store refilling and in figures 2, 3 and 4).

CI’ current activation appears to be a direct result of elevation
of [Ca®"];, because it can be triggered by agonists that release
internally sequestered Ca”" in a G-protein-independent fashion
(e.g. caffeine) [9, 11] or by voltage-dependent Ca®" influx [14].
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FIGURE 3. Reversal potentials (ENCX) for Na*/Ca®* exchanger (NCX). These
were calculated over a range of intracellular Ca®" concentrations ([Ca®*];; 100—
1,800 uM) and intracellular Na* concentrations ([Na']; 2-20 mM) using the
equation ENCx=3ENa-2ECa (where ENa and EcCa are the equilibrium potentials for
sodium and calcium, respectively) and assuming extracellular [Na*] and [Ca®*] to
be 140 and 1 mM, respectively (see NCX and Ca®" store refilling section). For
example, when [Na];=6 mM and [Ca®'];=200 nM, ENCX ~+25 mV (M). Under
those conditions in which ENCx drops below Vm, the NCX operates in reverse mode
to bring Ca2* into the cell.

118 VOLUME 30 NUMBER 1

S. HIROTA ET AL.

-10-
-20 ]
z
= -30 -
(&)
4
L
-40 T
-50- T
——=c42
-60 708°
90. 5 = — 18161412)(\-(“\\1\
105050403 0201 207 (W2 N
[Ca2*]; uM 0
Voltage mV mmm -60 mmm-50 mmm -40 s -30 20 s -10

FIGURE 4. Reversal potentials (ENcX) for Na*/Ca®* exchanger (NCX):
physiological relevance. As subplasmalemmal intracellular Na* concentration
([Na*]) rises from a low resting value towards 15 mM (due to influx through
nonselective cation channel), ENCX plummets below the membrane potential
(burgundy arrow), causing a transition of NCX into the reverse mode. As [Ca®'],
then rises from a resting value of 100 nM towards 400 nM (pale blue arrow), ENCX
rises, thereby decreasing Ca®* influx through NCX and/or forcing the latter into the
forward mode (depending on whether the membrane potential is more or less
negative than ENCX). During electrical slow waves, membrane potential oscillations
(purple arrows) could shift NCX back and forth between forward and reverse
modes.

However, these channels quickly undergo a rapid phosphory-
lation by calcium/calmodulin-dependent protein kinase,
which uncouples their activity from [Ca®*]; [72]. The channels
involved in mediating these currents exhibit a very small
unitary conductance (<20 pA) and voltage-dependent inacti-
vation [13]. There have been no further characterisations of the
CI" currents in ASM since the mid-1990s, even though their
molecular identity is still unknown: in other smooth muscle
preparations, these may include bestrophins [73] or several
different members of the Ca**-activated Cl” channel (CLCA)
family of CI" channels [74].

The NSCCs activated by GPCRs in ASM were first studied in
detail by KOTLIKOFF and co-workers [22, 69, 75]. These are not
Ca**-activated since they are not triggered by caffeine, but are
nonetheless Ca*'-dependent and coupled to plasmalemmal
receptors via G;/, proteins. Moreover, they were determined to
be Ca®* permeant (the fraction of current carried by Ca*"
estimated to be 14% at -60 mV) and blocked by Ni**. The
current authors have also recently described a NSCC which is
activated by depletion of the internal Ca** store (described in
detail in the section entitled Voltage-independent influx of
Ca®"). Tt is unclear whether these channels are of a different
subtype than the ones described by KOTLIKOFF and co-workers
[22, 69, 75].

The K" channels suppressed by spasmogenic stimulation
appear to include both the Ca®'-dependent and voltage-
dependent varieties. Suppression of the Ca**-dependent
current has been shown to be mediated by G-proteins [70,
76], but may also involve agonist-induced depletion of the
internal Ca®" pool with consequent decrease in Ca®" release
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directed at the plasmalemma. Suppression of the voltage-
dependent current, however, involves a shift in the voltage-
dependence of activation to more positive potentials [70].

Voltage-dependent Ca®" influx

Membrane depolarisation can result in opening of VGCCs and
influx of external Ca?*. These currents have been characterised
in the trachealis of the dog [77], cow [78], horse [79] and
guinea pig [80] as well as the bronchi of the human [81] and
dog [82]. By and large, these currents exhibit properties typical
of “L-type’”” Ca®" channels, including: 1) threshold potential for
activation of -45--25mV, and maximal activation at O0-
+20 mV; 2) inactivation which is relatively slow (with a time
constant of 0=5ms) and voltage-dependent (being half
maximal at -25- -30 mV); and 3) blockade by dihydropyridines
(e.g. nifedipine, nicardipine and nitrendipine) or phenylalky-
lamines (e.g. verapamil and D-600). These Ca** currents are
also blocked by certain inorganic cations such as Cd**, Co*",
Mn?* and Ni?*, while divalents such as Ba®* and Sr** permeate
the channels. It is important to note that voltage-dependent
inactivation of the channels is incomplete over the range of
potentials at which the channels begin to activate (-40-0 mV);
in other words, there is a range of potentials within which
there is a window current, or persistent noninactivating influx
of Ca® [83]. Such a window current may be responsible for the
Ca®" influx that maintains slow wave activity in intact airway
tissues (see Electrical slow waves section)

While the whole-cell studies summarised above indicate that
the Ca®* currents in tracheal smooth muscle (TSM) are
predominantly of the dihydropyridine-sensitive or L-type,
single-channel studies indicate the presence of two types of
Ca*" channel, with unitary conductances of 21-26 pS and
10 pS, respectively [84]. The current authors have obtained
evidence of both T- and L-type Ca®* currents in canine
bronchial smooth muscle [82]. That is, depolarisation evokes
a “fast” inward current (peak activation within 20 ms followed
by rapid inactivation) and a “slow” inward current (peak
activation at 50 ms and a much slower rate of inactivation); the
overall Ca®" current is approximately a 50:50 mixture of these
two types. The fast current exhibits threshold and maximal
inward current at -50 and -10 mV, respectively, while these
values are -40 and +10 mV for the slow current. More
importantly, the two currents differ markedly with respect to
the voltage-dependence of inactivation: inactivation of the fast
current is first noted at -80 mV, is half-maximal at -60 mV, and
is complete at -40 mV, compared with values of -60, -40 and
-10 mV, respectively for the L-type Ca®* current. A Ca®*
current with these voltage activation and inactivation proper-
ties has not been reported in the trachealis of any of the species
in which the L-type current has been carefully characterised. T-
type Ca®" currents are often important for pacemaking in other
cell types: their role in canine bronchial smooth muscle is as yet
unclear.

Electrical slow waves

Human [85] and guinea pig [86] ASM exhibit spontaneous
mechanical and electrical activities, referred to as ““basal tone”
and “slow waves”, respectively. Electrical slow waves gen-
erally comprise oscillations in Vm centred around -40- -30 mV
with amplitudes of up to 25 mV and a frequency of 1 Hz.
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These are unaffected by neuronal blockers (e.g. tetrodotoxin or
removal of external Na*) or by antagonists of various receptors
(e.g. antimuscarinics or antihistamines), suggesting that this
activity is myogenic in origin. These spontaneous activities
seem to be dependent, in part, on a constitutive metabolism of
arachidonic acid, although the enzymatic pathway involved is
apparently species-dependent. For example, basal tone and
slow waves in guinea pig ASM are reduced by inhibitors of
cyclo-oxygenase but are relatively unaffected by inhibitors of
lipoxygenase and thromboxane synthase [86-88]. Spontaneous
activity in human ASM, on the other hand, is not reduced by
inhibition of cyclo-oxygenase but is abolished by inhibition of
lipoxygenase [85, 89-91]. These observations suggest that
spontaneous activity is mediated by constitutive generation
of prostaglandins in guinea pig ASM, but of leukotrienes in
human ASM.

The ASM of the dog [51, 92, 93], cat [94], ferret [95], cow [96]
and horse [97] at rest is mechanically and electrically quiescent.
However, spasmogens can evoke changes in mechanical and
electrical activity that resemble the spontaneous activities
described above. For example, while canine ASM is electrically
and mechanically quiescent at rest, slow waves identical to
those recorded from guinea pig and human ASM are evoked
by cholinergic stimulation [51], the thromboxane analogue
U46619 [98], leukotrienes [95, 99], or K™ channel blockers [51].
Similarly, histamine-induced stimulation of bovine TSM
evokes phasic contractions and slow waves [96]. In addition,
indomethacin evokes contractions (apparently mediated by
leukotrienes) in equine ASM tissues that were previously
devoid of mechanical activity [97].

Whether recorded from tissues at rest (e.¢. human and guinea
pig) or from tissues stimulated by excitatory agonists (e.g.
canine, bovine and equine), slow-wave activity is influenced
by conditions which modulate voltage-dependent Ca*" cur-
rents. It is reduced by removing external Ca®>" or by Ca*"
channel blockers [51, 100], suggesting it is initiated and
maintained by a persistent influx of Ca®* through those
channels. In this context, it is noteworthy that the threshold
potentials for slow-wave activity and for activation of L-type
VGCCs in ASM are both ~-40--30 mV (fig. 2). The repolaris-
ing phase of these oscillations in ASM seems to involve
activation of Ca2+—dependent CI” channels [101].

Thus, ASM, which is electrically quiescent under ‘“basal”
conditions, is capable of exhibiting slow-wave activity identical
to that recorded from spontaneously active tissues if appro-
priately provoked. This suggests that a myogenic oscillatory
mechanism resides in all ASM tissues and is invoked by
excitatory stimulation. It is tremendously interesting that these
electrical slow waves oscillate up and down through the range
of potentials in which the window current of VGCCs exists, as
well as in the vicinity in which the NCX might transition into
reverse mode under certain conditions of excitatory stimula-
tion (see NCX and Ca®*" store refilling section). This has
enormous implications for EC coupling in ASM.

VOLTAGE-INDEPENDENT INFLUX OF Ca**

Transient receptor potential ion channels
Transient receptor potential (TRP) ion channels were first
described in the Drosophila visual system and are named after
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the role they play in phototransduction. This seminal discovery
has since been followed by the identification of seven TRP
homologues in mammals, namely the classical or canonical
TRP (TRPC) family, the vanilloid TRP family, the melastatin
TRP family, the mucolipin TRP family, the polycystin TRP
family, the antigen-repeat TRP family, of which there is only
one mammalian member, and no mechanoreceptor potential C
channel, which does not appear to occur in the mammalian
genome (for extensive reviews, see [102] and [103]). In many
nonexcitable cells, including mast cells, basophils, T-cells and
megakaryocytes, TRP proteins are thought to form inwardly
rectifying highly Ca**-selective channels also referred to as
Ca®" release-activated Ca®>" (CRAC) channels [104]. These
channels mediate Ca®" influx upon depletion of IP;-sensitive
intracellular Ca®" stores; a phenomenon that has been coined
capacitative Ca®* entry (CCE) [105]. However, in excitable cells
such as smooth muscle, TRP proteins form NSCCs that allow
for the permeation of both mono- and divalent cations [106].
As a consequence of their ionic promiscuity, NSCCs exhibit a
characteristically linear current-voltage (I-V) relationship,
with a reversal potential around 0 mV, when measured in
near-physiological ionic conditions. Although NSCC proteins
share a structural theme reminiscent of VGCCs, they are only
distantly related. Indeed, NSCCs differ from their voltage-
gated cousins in that they lack an inherent voltage sensor.
Consequently, NSCCs activate in a voltage-independent
fashion [104].

It has been proposed that TRPC proteins are largely respon-
sible for the formation of NSCCs expressed in mammalian
smooth muscle cells including rabbit cerebral [107] and human
[108] and rat [109] pulmonary arterial myocytes. In ASM, there
is evidence to support the expression of TRPC1, -3, -4, -5 and -6
in human [110], rat [110], guinea pig [111] and porcine [112]
airways. However, there is little knowledge of the relative
levels of expression of these subunits in the native cell, or of the
functional significance of their expression. Increased expres-
sion of TRPC1 [110] and TRPC3 [110] has been observed in
proliferating ASM cells cultured under normal conditions or in
the presence of inflammatory mediators (e.g. tumour necrosis
factor (TNF)-a), respectively. Despite minimal biophysical and
electrophysiological data regarding the properties of TRP
proteins in ASM, a number of recent reviews have broadly
implicated TRP channels in the pathogenesis of several airway
diseases including asthma, chronic obstructive pulmonary
disease, cystic fibrosis and emphysema [113-115]. Below a
body of evidence is discussed that supports the present
authors’ current understanding of the properties and physio-
logical implications of NSCC activation by GPCR stimulation
or intracellular Ca** store depletion in ASM.

GPCR signalling activates nonselective cation channels

Many agonists exert their contractile effects on ASM by
signalling through GPCRs (e.g. acetylcholine, histamine and
leukotrienes). GPCR stimulation not only leads to a transient
IP;-dependent release of internally sequestered Ca** from the
SR, but also results in the recruitment of NSCCs with a low
current amplitude that exhibit a significant Ca®" permeability
under “physiological” conditions (representing ~14% of the
inward current at -60 mV; [75]). It has been suggested that this
current is responsible for the sustained elevation in [Ca%'];
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observed during prolonged agonist stimulation [69, 75, 116]. In
contrast, patch-clamp studies reveal that Na* ions contribute
the majority of the inward current conducted by NSCCs,
generating speculation with respect to the role of this
conductance in agonist-evoked responses. Some have pro-
posed that the influx of Na" through NSCCs is important in
effecting a substantial depolarisation, resulting in the recruit-
ment of VGCCs to sustain or augment Ca?" influx, thereby
contributing to contraction. Alternatively, it has been proposed
that the substantial Na" permeation mediated by NSCCs may
function to drive NCX in reverse mode, favouring Ca?" influx
(see NCX and Ca?" store filling section). This model is
supported by a recent report that TRP proteins are co-localised
with NCX1 [117]. Furthermore, DAI et al. [17] reported that
sustained contractions required Ca®* influx mediated by the
NSCCs and the reverse mode of the NCX. Indeed, findings
from the current authors’ laboratory support a similar
mechanism underlying sustained agonist-evoked contractions
and SR Ca*" refilling in ASM (see NCX and Ca*" store filling
section) [16].

In both equine [69] and porcine [116] trachealis, activation of
NSCCs by histamine and/or acetylcholine relies exclusively
upon the activities of G;/G,, proteins coupled to H; histamine
and M, muscarinic receptors, respectively. Observations by
WANG and KOTLIKOFF [69] suggest that GPCRs may signal
through convergent pathways to recruit a common species of
NSCCs in equine trachealis; a phenomenon evidenced by the
equivalent I-V relationships measured during acetylcholine or
histamine stimulation and by the lack of an additive nature of
these currents upon concurrent stimulation with both agonists.
However, this is most likely a species-dependent phenomenon,
as acetylcholine-activated NSCC currents in porcine TSM could
not be duplicated with histamine or leukotriene (LT)D, [116].

While it is apparent that an elevation in [Ca%]; alone is
insufficient to activate NSCCs in several ASM preparations [69,
75, 116], both histamine- and acetylcholine-induced NSCC
currents do not activate unless GPCR stimulation is accom-
panied by an elevation in [Ca*];. For example, acetylcholine-
activated NSCC currents in porcine trachealis do not manifest
at [Ca®']; <50 nM [116]. Furthermore, in equine tracheal
myocytes, the inhibition of histamine-induced cation current
observed in the presence of U73122 (phospholipase C
inhibitor) can be restored by simultaneous application of
histamine and caffeine [116].

Unfortunately, the molecular identities of the proteins respon-
sible for NSCCs in ASM are still unclear. Work in this area has
been greatly hindered by the lack of specific inhibitors for TRP
channels. Nevertheless, in isolated cultured human ASM cells,
Ca®" influx induced by acetylcholine or bradykinin is
insensitive to organic Ca®' channel inhibitors including
nifedipine, nisoldipine or diltiazem, but can be completely
inhibited by several polyvalent cations including Co**, Mn**,
Ni?*, Cd*" or La®" [116, 118]. Similarly, acetylcholine-activated
NSCCs in equine tracheal myocytes cannot be blocked by
nisoldipine, yet are rapidly inhibited by 10 mM Ni** [75].
Although nifedipine reduces LTDg-induced contraction of
human small bronchioles by nearly 40%, these responses are
completely abolished by application of La®>*, Gd** and SKF
96365, suggesting that NSCCs mediate the majority of Ca*"
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influx observed in this preparation [119, 120]. While these
observations alone are insufficient to unequivocally implicate
specific TRP protein(s) in forming NSCCs in ASM, the
pharmacological and biophysical properties of the NSCCs
examined thus far indicate that members of the TRPC family
may be involved.

Nonselective cation channels mediate CCE

In ASM cells, depletion of intracellular Ca®" stores activates a
Ca*" influx pathway which in human [110], rat [110], guinea
pig [121], porcine [65, 112] and bovine [65] ASM is mediated by
a channel that is sensitive to NiZ*, La®* and SKF 96365, but not
to nifedipine. Although it is unclear whether this pathway is
modulated by release of Ca** through IP; receptors, it does
appear to be modulated by release of Ca** from RyRs [112].
Indeed, Ay et al. [112] demonstrated that CCE can be induced
in porcine TSM cells by depleting the internal Ca* store using
CPA or prolonged exposure to caffeine. While concurrent
administration of acetylcholine significantly augmented CCE,
this enhancement was found to be due to the recruitment of a
separate group of NSCCs whose function specifically relies on
release of SR Ca* via IP; receptors (i.e. they are blocked by
xestospongin D) but did not appear to involve diacylglycerol
or activation of PKC [112]. It is still unclear which TRP proteins
mediate these responses in porcine ASM; however, in cultured
human ASM there is compelling evidence that a preferential
increase in the expression of TRPC3 is responsible for
mediating elevated resting [Ca%"]; and enhanced CCE in the
presence of the pro-inflammatory cytokine TNF-a [122]. The
latter study reported that CPA-induced CCE was enhanced by
TNF-o, but inhibited by Ni** and La®*". Furthermore, these
responses could be blocked using small interfering RNA
directed toward TRPC3. Interestingly, in TNF-o. treated tissue,
CCE responses measured in the presence of acetylcholine were
insensitive to atropine (muscarinic receptor antagonist),
whereas responses in nontreated cells were reduced by
blockade of the muscarinic receptors. This suggests that
TNF-o. preferentially upregulates the expression of TRPC
proteins involved in the formation of “‘store-operated”
NSCCs [122].

While there is a substantial knowledge base regarding the
electrophysiological properties of the NSCCs involved in
mediating CCE in vascular smooth muscle preparations
[106], there remains a relative dearth of information in the
ASM field. Several studies have examined the effects of store
depletion on Ca®" influx and the regulation of [Ca*']; in ASM
(see above), but only three reports to date have utilised patch-
clamp techniques to measure directly the resultant membrane
currents [65, 110, 123]. In cultured human and rat bronchial
smooth muscle cells, SWEENEY et al. [110] demonstrated that the
current density of a Ni**-sensitive NSCC activated by passive
store depletion was markedly increased in proliferating versus
growth-arrested cells. This increase in membrane current
density was found to be associated with enhanced CCE
accompanied by a complementary increase in TRPC1 mRNA
expression; unfortunately Western blots were not performed to
confirm that TRPC1 protein levels were similarly increased, and
other TRPC family members were not examined. The current
authors’ group has recently provided a detailed description of
the electrophysiological properties of a CPA-evoked NSCC
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conductance in porcine and bovine trachealis [65]. It was
described how internal Ca®* store depletion augments a basal
NSCC conductance in TSM cells which is sensitive to micro-
molar concentrations of La®* and Gd*!, and exhibits a marked
permeability to Na" at physiologically relevant Vm [65]. Indeed,
the current authors demonstrated that while the bulk of the
current mediated by this NSCC conductance is carried by Na™, it
too possesses a significant Ca®* permeability that is capable of
sustaining elevated [Ca®']; responses in the presence of
extracellular Ca®*. Interestingly, this conductance appeared to
be constitutively active under “resting” conditions, and was
likely to be responsible for the basal, nifedipine-insensitive, Ca**
influx pathway observed in this preparation [65]. Others have
similarly reported the existence of a basal Ca** influx pathway
operating in ASM [121, 122, 124, 125], speculating that this
plasmalemmal Ca** “leak”” contributes to regulation of basal
[Ca®"]; [126].

Although it is clear that SR Ca®" depletion is sufficient to
activate NSCC in ASM, it is not clear whether the NSCC
conductance described by the present authors” group [65] and
others [110] is in turn regulated by [Ca®"];, as appears to be the
case for GPCR-activated NSCCs in other ASM preparations
[69, 75, 116]. This uncertainty stems from the fact that CPA is
known to induce a biphasic change in [Ca®*]; [65, 127]: this
change includes an initial transient increase in [Ca®"]; (due to
direct antagonism of SERCA-mediated sequestration of Ca**
and an unmasking of SR Ca*" leak viz RyRs) followed by a
sustained decline in [Ca*"]; (due to extrusion of Ca>" from the
cell) [127]. To resolve this question, the current authors showed
that loading the cells with BAPTA, which depletes the SR
without stimulating an elevation in [Ca®™];, is sufficient to
activate NSCCs having pharmacological and electrophysiolo-
gical properties identical to the CPA-evoked NSCC currents
(unpublished observations). Although the pharmacological
profile of store-depletion activated currents in ASM is similar
to the GPCR-activated currents described above (see GPCR
signalling activates nonselective cation channels section), only
the former can be activated in the absence of an elevation in
[Ca®'];, suggesting that several functionally distinct species of
NSCCs may be expressed in ASM.

The mechanisms responsible for conveying SR Ca®" status to
the plasmalemmal ion channels which mediate CCE have been
studied for decades but remained frustratingly elusive.
However, recent work in several nonmuscle cells point to the
involvement of stromal interacting molecule (STIM), initially
described as a candidate tumour suppressor gene almost a
decade ago [128], and its human homologue STIMI1. In
particular, STIM has been found to be an essential component
of TG-induced CCE and CRAC currents in Drosophila S2 cells,
rat basophilic leukaemia (RBL) cells, Jurkat T-cells and HEK
293 cells [129-132]. This type I transmembrane protein contains
an EF-hand motif located near its amino-terminus which is
thought to function as a Ca®>* sensor of the endoplasmic
reticulum (ER)/SR Ca®" store [133, 134]. In resting Jurkat T-
cells, RBL cells, human T-cells and pheochromacytoma cells,
STIM1 resides in ER-like structures, co-localised with SERCA2,
but translocates to the plasmalemma upon Ca* store depletion
[134]. In cells made to express EF-hand mutants of STIM1 with
compromised Ca* binding ability, STIM1 localises to the
plasmalemma but not the ER, and the cells exhibit elevated
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resting [Ca%]i and persistent TG-independent Ca?" influx, both
of which are inhibited by 2-APB, SKF 96365 and Gd>*.
Altogether, the data suggest that STIM1 translocates to the
plasma membrane when it is no longer able to bind ER/SR
Ca®* (e.g. when the Ca®" store is depleted) and directly
activates CRAC channels in those cells. The question then
becomes whether this mechanism operates in ASM.

Only one publication to date has addressed this question in
ASM, finding both CCE and store depletion-evoked membrane
currents in human bronchial smooth muscle cells to be
dependent upon STIM1 but not STIM2 (a related protein)
[123]. Interestingly, targeted silencing of STIM1 inhibited both
CPA- and histamine-induced Ca®*" influx and CCE, while
bradykinin responses were largely unaffected. Furthermore,
CPA-induced NSCC currents were almost completely abol-
ished by targeted suppression of STIM1 (but not STIM2).
Altogether these observations have several profound implica-
tions. First, STIM1 may indeed be mechanistically involved in
transmitting SR Ca*" store status to store-operated NSCCs in
ASM. Secondly, the study provides evidence of agonist-
specific differences in the ability to activate store-operated
NSCCs, which may reflect variations in the level of PLC
activation and subsequent IP;-mediated SR Ca’" release (i.c.
the relative magnitude of SR depletion) associated with each
agonist [123]. In addition, the study also highlights the
difficulty of ascertaining the relative contribution of GPCR-
activated and store-operated NSCCs in mediating agonist-
evoked membrane currents and/or Ca®" influx.

Regardless of the mechanism by which NSCCs in ASM are
activated (i.e. GPCR stimulation or depletion of intracellular
Ca?" stores), they clearly contribute to the regulation of [Ca*'],.
In some cases, NSCCs are involved in CCE-evoked contraction
of human [110, 119, 120] and rat [110] bronchial and guinea pig
[121] TSM. In addition, there is mounting evidence to suggest
that NSCCs may facilitate Ca®* entry indirectly by depolarising
the membrane (thereby activating L-type Ca*" channels) and/
or promoting reverse-mode operation of NCX. Unfortunately,
it is still largely unclear whether these NSCCs actively
participate in the refilling of the SR, a function that is entirely
consistent with the nature of the stimulus responsible for
activating these channels. Further clarification of these ques-
tions may require the use of small interfering RNA or other
genomic techniques (e.g. gene knock-out models) in order to
determine which TRP proteins are functionally involved in the
regulation of ASM contraction and airway calibre.

NOVEL MECHANISMS

NCX and Ca®" store refilling

Following agonist-induced elevation of [Ca?"];, conditions are
returned to normal through the extrusion of Ca®" to the
extracellular domain and/or re-sequestration into the SR.
Ca®" extrusion must be carefully matched to net Ca**-influx:
otherwise, there will be a deficit in the amount of intracellular
Ca*" available to refill the SR. Thus, influx pathways must exist
to account for the loss of extruded Ca®*. The role of NSCCs in
this function has been discussed previously in the Voltage-
independent influx of Ca** section, while a possible role for
voltage-dependent Ca®* channels in this capacity will be
considered later in the Transition from pharmacomechanical
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coupling to electromechanical coupling section. Recently, DAI
et al. [17] introduced a third pathway contributing to Ca**
influx during agonist-induced contraction of porcine ASM
(Ca®" influx mediated by the reverse mode of the NCX) as has
been described in other nonairway preparations [17, 135-138].
The current authors later showed the importance of this
mechanism in SR refilling in bovine ASM [16], as have others
in murine ASM [139]. This Ca**-influx pathway appears to be
dependent on the availability of extracellular Na® [16].
Interestingly, ROSKER et al. [140] have described an intimate
relationship between the NCX and TRP proteins, building on
an earlier report by MOORE et al. [141] that suggested that NCX
and the Na'/K" pump are co-localised in smooth muscle
caveolae in close apposition to the SR. Thus, it is possible that
the reverse mode of the NCX, driven by membrane depolar-
isation and elevated [Na']; in the region between the SR and
the plasmalemma, may contribute to the Ca** influx pathways
required to replenish the smooth muscle cell of Ca** and allow
for maximal refilling of the SR.

The direction of ionic flux through the NCX can be predicted
by calculating its reversal potential (ENCX) under varying
concentrations of [Ca®']; and [Na'];, and comparing it to the
Vm under the same conditions. That is, given the stoichiometry
of the NCX (three Na* ions transported for every Ca®*), and the
relative valencies of these cations, ENCX is defined with
reference to the equilibrium potentials for sodium (ENa) and
calcium (EcCa) thus [85]:

ENCX=3ENa-2ECa (1)

Since ENa and EcCa are not static, ENCX is a dynamic value that
will change depending on the intracellular environment (i.c.
changes in [Ca®']; and [Na'];; figs 3 and 4). As such, when Vm
is more negative than ENCX, the NCX will act in the forward
mode, extruding Ca?* from the cell; conversely, if Vm is more
positive than ENCX, the NCX will act in the reverse mode,
leading to Ca®" influx. During agonist-induced release of
internally sequestered Ca?", there is membrane depolarisation
and significant inward Na" current (via activation of NSCC
and/or TRP channels) which elevates [Na']; in the domain
immediately adjacent to the plasma membrane. Increased
[Na'];, in conjunction with low-to-moderate [Ca®];, brings
ENCX into a range of potentials more negative than that of the
depolarised membrane (i.e. <-30 mV; fig. 4), thereby forcing
the NCX into reverse-mode operation. Ca®" entering the cell
may be directly shuttled into the depleted SR, keeping the
[Ca']; in this subplasmalemmal region relatively low until
Ca®" uptake slows (i.e. because the SR is full), at which point
Ca®" accumulates and NCX flips back into the forward mode.

Some previous studies, including those of the current authors,
have concluded a central role for L-type Ca®* channels in store-
refilling on the basis of data obtained using techniques aimed
at manipulating Vm (e.g. KCl-induced depolarisation or
cromakalim-induced Vm clamping) [47, 142], even though
inhibition of L-type Ca®" channels did not completely abolish
store-refilling [47, 48]. Now recognising reverse-mode NCX as
another voltage-dependent Ca®" influx pathway, the current
authors would re-evaluate those earlier data; future studies
examining Ca®* handling and EC coupling should not over-
look the potential for Ca** influx via the NCX.
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CI' and Ca®" handling

As mentioned in much of the present review, Ca2+—dependent
contraction in ASM is driven primarily by the release of Ca*"
from the SR. In addition to activating the contractile apparatus,
Ca®" release from the SR can trigger membrane currents,
including Ca**-dependent CI" currents. Cl’-mediated depolar-
isation drives Ca**-dependent contraction in many nonairway
smooth muscle types through the activation of L-type Ca**
channels. However the present authors, and others, have
reported that inhibition of Cl-mediated depolarisation using
selective CI” channel blockers (niflumic acid and 5-nitro-2-(3-
phenylpropylamino)benzoic acid) has little effect on the
cholinergic concentration-response relationship in standard
organ bath experiments. This poses the question: “what role
does CI play in ASM?”” A growing number of reports suggest
that intracellular CI" (Cl; ) may be important in Ca** handling
in smooth muscle.

The movement of Ca®" across the SR membrane is an
electrogenic processes (fig. 5). Since the efflux of Ca®* through
RyR and IP3-receptors is entirely a passive process, accumula-
tion of charge across the SR membrane could electrostatically
hinder the sustained movement of Ca®" into or out of the SR.
However, compensatory ion fluxes across the SR membrane
have been found in other nonairway preparations which are
thought to neutralise any charge accumulation due to Ca**
movement [143, 144]. CI” seems to be particularly important in

Extracellular
space

Subplasmalemma

IONIC MECHANISMS IN ASM

this respect. For example, replacement of CI° with large
impermeant anions reduced the early phasic portion of
agonist-induced contraction of ileal longitudinal smooth
muscle in parallel with a reduction in cellular **Ca®" uptake
[145, 146]. Similarly, inhibition of SR CI” channels reduced Ca*
sequestration into saponin-permeabilised gastrointestinal
smooth muscle cells [144], and depletion of CI; reduced
angiotensin II- and norepinephrine-induced contractions of
vascular smooth muscle [147]. Recently, the current authors
reported that the depletion of CI'; through prolonged bathing
in Cl'-free bathing solution significantly reduced successive
agonist-induced contractions in ASM [148]; additionally, the
rates of contraction and relaxation (following agonist removal)
were greatly reduced when CI'; was reduced, suggesting the
release and reuptake of Ca®* were both hindered by depletion
of CI;. In contrast to those effects of chronic CI; depletion,
acute removal of ClI" from the bathing solution accelerated
contractile responses (but slowed relaxations). An interpreta-
tion of this is that sudden removal of external CI" would
augment CI” efflux from the cell during agonist stimulation,
resulting in greater reduction in [CI']; in the region adjacent to
the SR and allowing for more CI to leave the SR, which in turn
would augment the rate of Ca®" release, as evidenced by a
greater rate of contraction. Since the removal of extracellular
Cl' increases CI" efflux, the cell experiences a short-term
depletion of CI';, resulting in a reduced ability to reuptake Ca*"
into the SR, as seen in the decreased rate of relaxation.

FIGURE 5. CI channels serve to neutralise charge build-up on the sarcoplasmic reticulum (SR) membrane. a) As internal Ca®* (green) is released, charge builds up on
the SR membrane, decreasing the driving force on Ca*. b) Channels for CI" (red) on the SR dissipate the charge build-up on the SR membrane, removing this impediment to

Ca?* efflux from the SR. ¢) However, accumulation of CI in the restricted subplasmalemmal space decreases the driving force on CI". d) Plasmalemmal CI” channels disperse

cytosolic CI', thereby increasing the driving force on CI” from the SR (and thus enhancing Ca®* release).
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Altogether, then, there is a growing body of evidence to
suggest that the burst of Ca**-release leads to a rapid activation
of CI" currents which in turn boosts further Ca*" release (by
promoting efflux of CI" from the SR to compensate for the
charge build-up). The rapid inactivation of those CI" channels
by calcium/calmodulin-dependent protein kinase (described
in the Agonist-evoked membrane depolarisation section) may
represent an important timing mechanism, allowing for
“resetting” of the ClI" and Ca®' gradients by SR and
plasmalemmal pumps, and thus setting the stage for sub-
sequent bursts of Ca®* (i.e. repetitive Ca>* waves).

Regulation of Rho/ROCK by Ca®', CI' and Vm

The current authors were the first to show in ASM that RhoA is
activated by 60 mM KCl [149], contrary to initial expectations.
Follow-up work showed that this is directly related to elevated
[Ca®'];, although membrane depolarisation per se may also be
involved [150]. Changes in Rho-associated kinase (ROCK)
activity paralleled those in RhoA, suggesting KCl does not
exert an additional effect on ROCK (i.e. is only stimulating
RhoA). It will be important, then, to ascertain how Ca*" and
Vm stimulate RhoA activity.

Rho activation itself may ultimately prove to be Ca*"
dependent: the current authors have already ruled out roles
for Ca®"/calmodulin-dependent kinase II and for PKC (which
is also Ca" dependent) in activation of Rho [150]; others have
shown focal adhesion kinase (FAK) phosphorylation following
GPCR stimulation to be Ca*" dependent [151, 152]. Another
possibility is that Ca**, being a divalent cation, influences the
interactions between Gis 13, RhoGDI, RhoGEF, RhoGAP and/
or RhoA by interfering with Mg**-dependent activation of
RhoA (Mg influences guanosine triphosphate/guanosine
diphosphate exchange activity [3, 153-156]).

Conversely, Vm per se could influence Rho activity, both
directly and indirectly. Directly, Rho is a charged molecule and
would be expected to be influenced by the transmembrane
voltage gradient as it approaches and inserts into the
membrane (both steps are prerequisite for its activation).
Indirectly, voltage-sensitive channels may signal to Rho upon
membrane depolarisation: there is a growing literature
describing direct physical interactions between various
enzymes and ion channels, including L-type Ca®" channels
[157, 158]. As such, the voltage-dependence of Rho-activation
could be conferred by the Ca®* channels. Such a direct
channel-enzyme interaction does not necessarily imply that
Ca?*-channel blockers should prevent Rho activation, because
these only prevent ion conduction through the channels and
do not prevent the depolarisation-induced conformational
changes that might stimulate Rho activity.

Ca2+—dependent CI' channels may also transduce the signal
between the plasmalemma and Rho. There are two pieces of
evidence that suggest that Cl; modulates RhoA/ROCK
signalling in ASM. First, while characterising the agonist-
evoked Cl'-currents in ASM [11, 12, 66, 67], the current authors
noted anecdotally that cells perfused internally with a CI*-
deficient electrode solution quickly lost the ability to contract
to acetylcholine, even though the membrane current responses
persisted. In contrast, control cells perfused internally with a
140 mM CI electrode solution could contract repeatedly for a
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number of hours [9]; more interestingly, those contractions
could be evoked during voltage-clamp at -60 mV and in the
presence of CPA, indicating they are independent of both
voltage-dependent Ca*" influx and release of internal Ca**. At
that time, the reason for the discrepancy between high and low
CI’ conditions was unknown. Additionally, the current authors
have more recently found that the CI" channel blocker niflumic
acid markedly suppresses cholinergically-induced RhoA-acti-
vation (unpublished data). These observations lead to a
suggestion that CI; may modulate Rho/ROCK activity.
Changes in subplasmalemmal [CI'] might facilitate transloca-
tion of RhoA to the membrane, or enhance interactions between
the different components of this signalling cascade: others have
shown G-protein activity to be modulated by CI’; [159].

Ca?* oscillation frequency determines contractile function
The traditional approach to Ca®-dependent contraction in
smooth muscle considers only global and sustained elevations
of [Ca®'];. However, there is increasing evidence for consider-
able spatial and temporal heterogeneities in [Ca*']; elevation
[17, 21, 39, 160, 161]. In particular, agonists evoke a large Ca%"
wave which sweeps across the length of the cell, followed by a
series of subsequent Ca** waves at periodic intervals with a
frequency which seems to correlate with the degree of tone [39,
161]. Ca®" waves in neighbouring cells are generally asynchro-
nous. In some cases, unitary Ca?* events referred to as Ca®*
sparks have been described [15].

The mechanisms underlying Ca**-wave generation and pro-
pagation have been studied for over a decade, yet are still
poorly understood. Agonist-induced oscillations in [Ca%;
have been proposed to be triggered by IP;. However, DAI et
al. [17] reported the generation of oscillations in the presence of
the IPs-receptor antagonists xestospongin C and 2-APB.
Continuous Ca*" oscillations can be inhibited by caffeine and
ryanodine [17, 39, 162], reinforcing the central role of the SR
and possibly suggesting that CICR is involved. The importance
of SR Ca®" is also highlighted by the sensitivity of Ca®"
oscillations to SERCA inhibitors or chelation of intracellular
Ca®" [17, 39]. In addition to Ca®" released from the SR, Ca*"
influx pathways play a crucial role in the continuous
generation of agonist-induced asynchronous Ca®" oscillations.
Removal of extracellular Ca** from bathing solutions results in
a gradual run-down of oscillations. Early studies revealed that
agonist-induced oscillations were sensitive to verapamil and
enhanced by BAY K-8644, suggesting a role for L-type Ca®*
channels [60]. It is unlikely that the Ca** waves are triggered by
electrical slow waves, given that the frequency of the former is
roughly 1-2 orders of magnitude lower than that of the latter.
Conversely, inhibitors of NSCCs (e.g. SKF 96365 and Ni**) and
of reverse-mode NCX inhibit oscillations and the correspond-
ing force generation in responses to cholinergic stimulation
[17], suggesting involvement of those other pathways as well.
The contributions of many other molecular and cellular entities
and signalling events have also been examined, including:
mitochondria; cytosolic Ca**-buffering proteins; Ca**uptake
and extrusion rates; and the rates of activation and inactivation
of IP3-receptors and RyR, efc. The integration of these various
parameters into a mathematical model is beyond the scope of
the present manuscript, but has already been carried out
elsewhere [163-165].
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Very little is known about how agonist-induced Ca*" oscilla-
tions in ASM determine the level of sustained force generation:
how are these Ca®" signals integrated and transduced at the
level of the contractile apparatus? It is evident from the study
of genetically hyper- and hyporesponsive mice that Ca** waves
of similar frequency can result in very different contractile
responses [160], and comparisons of agonist-evoked constric-
tion of airways wversus pulmonary vasculature reveal very
different frequency-response relationships [21, 166-168]. Thus,
it appears that the Ca*'-integrative ability of the contractile
apparatus in smooth muscle can vary considerably. However,
the details of this frequency-sensitive integration in Ca*'-
dependent contraction is lacking. One hypothesis relates this
integration to the activity of MLCP. MLCK activity is directly
proportional to [Ca*'];, whereas MLCP activity is increased by
accumulation of its substrate: phosphorylated myosin. As
such, sustained contraction would require continuous stimula-
tion of MLCK activity, and the net level of tone would be
determined by the relative levels of MLCK and MLCP
activities: in other words, the stimulus to contract would be
encoded within the absolute magnitude of a tonic change in
[Ca®]; (fig. 6a). Such a mechanism requiring continuous
myosin  phosphorylation/dephosphorylation ~and ~ Ca**
release/uptake would be very expensive -energetically.
Instead, if MLCP were briefly but reversibly suppressed by
Ca?", a Ca?* wave would be sufficient to stimulate MLCK and
evoke a contraction that would eventually resolve (be reversed
by MLCP) unless/until another Ca** wave were triggered to
reinvigorate MLCK and keep MLCP in check: in other words,
net myosin phosphorylation and excitation could be encoded
within the frequency of Ca®" spiking (fig. 6c) in a much more
economical fashion. Other possible targets that might be
regulated by Ca®" wave frequency include MLCK, RhoA or
PKC, all of which can regulate the activity of the contractile
apparatus.

Superficial buffer barrier

Electron microscopy of vascular smooth muscle cells shows the
SR to form sheets around the internal periphery of the cell
[169], thereby dividing the cytosol into two spaces in which
[Ca®]; could be regulated independently. Ton channels and
plasmalemmal-associated enzymes would sense changes in
[Ca?']; in the peripheral space immediately underneath the
plasmalemma, while the contractile apparatus would sense
[Ca®*]; in the deep cytosolic space underneath the SR. Another
recent study suggests that the same anatomical arrangement
can be found in ASM [170]. Such an arrangement has
important physiological consequences, as it may allow the cell
to effectively dissociate the influences of [Ca®*]; on mechanical
and electrical activities. The current authors have also
hypothesised that RyR may be preferentially located on the
subplasmalemmal face of the SR and play an important role in
directing Ca** from an overloaded SR towards Ca*"-extrusion
mechanisms on the plasmalemma (e.g. PMCA; NCX), whereas
IP; receptors play the primary role in EC coupling. Others have
provided functional evidence for this. One group described the
differential distribution of RyR subtypes at the periphery and
central regions of ASM cells [28]. An earlier study showed the
B-agonist isoproterenol to simultaneously decrease [Ca®']; in
the deep cytosol while elevating [Ca?*]; in the periphery of the
cell [171]: presumably, the goal of these changes is to move
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FIGURE 6. The amplitude and frequency modulation (AM and FM, respec-
tively) of Ca®*-signalling. a) Repetitive Ca®" spikes can trigger enzymes (or ion
channels) with different Ca®*-sensing properties. b) One hypothetical enzyme (E+)
may increase its activity with each elevation of [Ca®*] and not deactivate quickly
(left): as such, its activity will progressively increase with each spike and become
maximal after a few waves have passed, irrespective of frequency (right). c¢) Another
enzyme (E,) might be more strictly dependent upon [Ca2*], activating quickly but
then falling back to baseline as soon as the Ca®*-wave passes (left); as such,
summation is seen with increasing Ca®*-wave frequency (right). Enzymes such as
E, best decode information within the magnitudes of the Ca* transients (AM-
signalling), while those such as E, best decode spike frequency (FM-signalling).

Ca”" away from the contractile apparatus toward the mem-
brane for subsequent extrusion out of the cell. This close
apposition of the SR and plasmalemmal membranes, with
juxtaposition of RyR on the SR and various Ca**-handling
entities on the plasmalemma (PMCA; NCX), is a sine qua non
for a peculiar phenomenon described in the next section in
which Ca®* flows in the opposite direction, from the
extracellular space directly into the SR, bypassing SERCA.

The division of the cytosol into two compartments may not
only be relevant to Ca®* signalling. A recent study of Rho/
ROCK-signalling in ASM found two distinct pools of Rho, one
near the membrane and one in the deep cytosol, with different
time-courses of activation following agonist stimulation and
different roles in regulation of myosin light chain phosphory-
lation [172].

Transition from pharmacomechanical coupling to
electromechanical coupling

Under normal physiological conditions, agonist-evoked con-
tractions in ASM are sustained and largely insensitive to
classical Ca®*-channel blockers. However, many groups have
shown that under conditions in which handling of Ca** by the
SR is disrupted, those responses become acutely dependent
upon voltage-dependent Ca**-influx. For example, following
functional depletion of the SR using CPA, cholinergic stimula-
tion of ASM leads to substantial phasic contractile responses
which are precipitously abrogated by subsequent exposure to
dihydropyridine blockers of L-type Ca®" channels [46, 173-176];
in this respect ASM acts much like vascular and gastroin-
testinal smooth muscle preparations. Similar observations are
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made in ASM tissues challenged with cholinergic agonists in
the presence of ryanodine [177-179]. Although the conditions
surrounding these responses are totally artificial, such experi-
ments may reveal something important and fundamental about
EC coupling in ASM.

Data from several groups, including that of the current
authors, suggest a direct coupling between L-type Ca*
channels and the SR, allowing Ca*" to move directly from
the extracellular space into the SR without the involvement of
SERCA activity. This mechanism was first proposed on the
basis of mechanical data (contractions evoked by repeated
cholinergic stimulation) as an indirect measure of Ca®"
handling [45-48]. More compelling, though, was the monitor-
ing of Ca®* handling using membrane CI" currents, which are
directly Ca®" dependent (in contrast to mechanical responses,
which are quite heterogeneous with respect to Ca** depen-
dence): using this approach, the present authors demonstrated
SR depletion (reflected in disappearance of the CI" currents)
and then refilling using voltage pulses (reflected in reappear-
ance of those currents) in voltage-clamped TSM pretreated
with CPA [9]. There have been innumerable studies of Ca*"
uptake in a wide variety of cell types: all the evidence suggests
SERCA is the only type of Ca** pump on the SR, and no study
has identified a SERCA that is insensitive to CPA. As such,
refilling in the presence of CPA implies that voltage-dependent
Ca?* influx is somehow directed into the SR, but not
necessarily via SERCA. Elsewhere, a model has been proposed
which describes one such alternative refilling pathway [180-
185]. Briefly, agonist-induced depletion of the internal store
triggers activation of protein tyrosine kinases (PTK), Ras and
reorganisation of the cytoskeleton in such a way as to directly
couple IP; receptors on the SR with Ca®" channels on the
plasmalemma. Several observations made in ASM are con-
sistent with such a mechanism: 1) spasmogenic stimulation of
ASM is accompanied by activation of PTKs [186, 187] and Ras/
Rho [188-191], as well as cytoskeletal rearrangement [189, 191,
192]; 2) inhibition of PTK compromises SR refilling [193];
3) ASM depleted of FAK, which regulates cytoskeleton
stability, shows marked suppression of cholinergic Ca**
transients and contractions as well as changes in voltage-
dependent Ca®" channel function, without any disruptive
changes in the contractile apparatus per se when assessed by
addition of Ca*" to permeabilised muscle strips [194]; 4) in the
rat ASM, RyR1 on the SR co-localise with voltage-dependent
Ca®* channels on the plasmalemma [27]. However, the possible
role for this novel SR refilling pathway has not yet been tested
in ASM: the use of inhibitors of cytoskeletal organisation (e.g.
cytochalasin D, jasplakinolide, colchicine and vinblastine)
would be invaluable in this respect.

It is still quite unclear how Ca®" enters the SR, if not via
SERCA. Although SERCA appears to be the only pathway for
active uptake into the SR, this does not mean it is the only
possible route for Ca** entry. Under normal physiological
conditions, IP3 receptors and RyRs allow Ca?" to leave the SR:
however, this movement is entirely passive, with Ca®" moving
down its concentration gradient. It is conceivable, then, that if
the driving force on Ca”" were reversed, these channels could
allow Ca”" back into the SR: detailed electrophysiological
studies show these channels do not exhibit current rectification
[195, 196]. Ca*" influx through L-type Ca®" channels, TRP
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channels and/or reverse-mode NCX could allow [Ca®']; to
accumulate within the “superficial buffer barrier” formed by
the close apposition of the plasmalemmal and SR membranes:
as such, under conditions in which the SR were depleted (e.g.
by agonist stimulation or by CPA), opening of those Ca**-
permeable channels on the SR would allow refilling. Given that
Ca”" release through RyR and IP; receptors is inhibited by Ca*"
at micromolar concentrations via a negative feedback mechan-
ism [24, 25] it might be reasonable to assume that retrograde
flux back into the SR might likewise be susceptible to higher
[Ca®'] in the subplasmalemmal space. However, fluorimetric
measurements of [Ca®'] during agonist stimulation show that,
while the initial Ca®* spike may rise into the micromolar range,
the sustained (or plateau) portion is well below that level. Also,
it is possible that the cytoskeletal rearrangements which bring
the plasmalemmal and SR-associated ion channels into close
proximity are accompanied by (or cause) changes in the
properties of the RyR and/or IPs-receptors (e.g. obstruction of
the Ca®* binding site which mediates channel inactivation).

Ca”" which enters the depleted SR in this way could continue
down its electrochemical gradient out of the other side of the
SR and contribute to contraction. The contractions evoked
under these conditions would necessarily be completely
sensitive to L-type Ca”*-channel blockers, consistent with the
otherwise paradoxical observations summarised at the begin-
ning of this section.

UNRESOLVED QUESTIONS: DIRECTIONS FOR FUTURE
RESEARCH

The exact distribution of the various ionic channels, pumps
and exchangers needs to be ascertained with a high degree of
precision. For example, are RyR and IP; receptors uniformly
distributed across the SR, or are they clustered heteroge-
neously in ways which have important functional implica-
tions? That is, are these SR-associated entities brought into
close proximity with others on the plasmalemma, such as Ca**-
channels, NCX and PMCA (as demanded by the models
proposed in the Superficial buffer barrier and Transition from
pharmacomechanical coupling to electromechanical coupling
sections)? Are NSCCs co-localised with NCX (as implied in the
NCX and Ca®" store refilling section)? Do VGCCs or Ca*'-
dependent CI” channels interact with Rho (see Regulation of
Rho/ROCK by Ca®', CI" and Vm section)?

The mechanisms underlying discharge and refilling of the
internal Ca®* pool need to be better understood. What
molecular entities are involved in producing the periodicity
of the Ca®* waves, and how are these waves transduced by the
contractile apparatus? What might be the relationship between
electrical slow waves and Ca®* waves? The former would be
expected to influence the driving forces on the cations which
permeate NSCCs and the “window current” of the VGCCs,
which in turn would influence the driving forces on NCX (as
would the slow waves themselves); is there then crosstalk
between the electrical slow waves and Ca®" waves? Likewise,
how might CI” currents contribute to emptying/refilling of the
Ca®" store? What refilling pathways are operative other than
SERCA: can there be reverse flow through RyR and/or IPs-
receptors?
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Another important area for further investigation is the
regulation of Rho/ROCK by Ca®**, CI" or Vm. Does that
enzyme interact with certain ion channels at the membrane?
Is there crosstalk between Rho/ROCK activities and the Ca**
waves?

The molecular identities of the plasmalemmal and SR CI" and
NSCC channels remain unknown. This is in stark contrast to
our relatively specific knowledge of the subtypes of voltage-
dependent K* and Ca®" channels in ASM [52, 53]. Is the CI
conductance a member of the CLCA family [74, 197] or a
bestrophin [73]? Which of the many TRP proteins make up the
NSCCs in ASM?

Much of the work summarised in the present review was
obtained using tracheal preparations, even though there is a
growing body of literature attesting to the important differ-
ences between tracheal and bronchial smooth muscle. These
express different ion channels [82, 198] and appear to rely
differently upon various EC coupling mechanisms [175]. This
is an urgent matter, since the bronchi play a far more
important role than the trachea in determining resistance to
airflow, and are the locus of inflammation and other
functional/structural changes associated with asthma. Thus,
it will be crucial to examine these mechanisms in bronchial
preparations, and to rely less heavily on tracheal ones.
Likewise, there are far too many examples of species-related
differences to list here: this fact demands that there be a greater
emphasis on human-derived preparations rather than those
from other animals. Cultured human cells are not the best
answer to this problem, given the many examples of
phenotype transitions which occur in those preparations.

CONCLUSION

Perhaps the most fundamental conclusion that can be drawn is
that a simplistic view of airway smooth muscle can no longer
be held, i.e. that airway smooth muscle has: relatively uniform
cytosolic ionic concentrations; homogeneous distributions of
ion channels and pumps; simple fluxes of Ca®"; and smooth
transitions from the resting state to the excited state. The more
that is known about ionic mechanisms in airway smooth
muscle, the more these are found to be exceedingly complex:
nothing is static, very little is homogeneous. There are
temporal and spatial heterogeneities in the intracellular
concentrations of Ca®>", Na* and CI, and perhaps also for
other ions; even enzyme activities (e.g. Rho, Rho-associated
kinase, protein kinase C, protein kinase A, adenylate and
guanylate cyclases) are now found to exhibit marked spatial
and temporal heterogeneities. There are oscillations in mem-
brane potential and in the intracellular Ca** concentration. Not
only can the Na*/Ca®" exchanger operate normally to reduce
the intracellular Ca®" concentration, but it can also operate in
the reverse mode to bring Ca** into the cell. Relaxants can
simultaneously stimulate uptake of Ca®* from the deep cytosol
(via sarco-endoplasmic Ca”* adenosine triphosphatase) and
Ca”" release into the subplasmalemmal space (via ryanodine
receptor) for subsequent extrusion out of the cell (via plasma
membrane Ca®* adenosine triphosphatase). Perhaps more
surprisingly, Ca** may also flow backwards through that same
pathway, entering through various inward conductances
(voltage-dependent Ca®" channels, nonselective cation channels,
Na*/Ca®" exchanger) to accumulate in the subplasmalemmal
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space and then enter the sarcoplasmic reticulum (through
ryanodine receptor), only to be re-released towards the
contractile apparatus. Electrophysiologists are often focusing
on the “wrong” end of the range of membrane potential: the
important physiological events are not occurring at the
positive potentials at which Ca** channels are maximally
activated, nor at 0 mV at which we typically artificially set
the equilibrium potential of CI" and at which nonselective
cation channels are obviated, but instead at ~ -40 mV at
which the physiological equilibrium potential of CI, inward
nonselective cation channels, slow waves, window current
and reverse-mode Na*/Ca”" exchanger are found (fig. 2).
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