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ABSTRACT: The purpose of this review is to describe the present state of knowledge
regarding host susceptibility factors that may determine the occurrence, development
and severity of interstitial lung disease (ILD) caused by exogenous agents.

First, host susceptibility may pertain to differences in the delivery and/or persistence
of the noxious agent in the lung. The deposition and clearance of inhaled particles or
fibres may vary depending on innate anatomical or physiological characteristics, and on
acquired changes, such as nasal disease or smoking-induced alterations. Genetically- or
environmentally-induced interindividual differences in the expression of pulmonary
biotransformation enzymes may form the basis for, or contribute to the risk of, drug-
induced interstitial lung disease.

Secondly, there are genetic and acquired variations in various enzymatic and
nonenzymatic defence systems that protect cells and tissues against oxidative stress,
which is often involved in the pathogenesis of interstitial lung disease caused by
particles, fibres, metals, organic agents and drugs.

Thirdly, the occurrence of immunological sensitization is dependent on both genetic
and environmental factors. This has been demonstrated in chronic beryllium lung
disease and in hypersensitivity pneumonitis.

Fourthly, the propensity of individuals to develop particular types of inflammation,
such as granulomas, is probably under genetic control. The regulation and resolution of
inflammation and fibrogenesis caused by dust particles are also partly determined by
genetic factors, involving cytokine networks and growth factors.

In conclusion, although the issue of genetics pervades the entire discussion of host
susceptibility, genes are not the only determinants of health and disease. Environmental
factors may be equally important in shaping host susceptibility. Therefore, research
must be focused on both the genetic bases and the environmental determinants of
interstitial lung disease, in order to provide mechanism-based prevention strategies,
early detection of, and improved therapy for these conditions.
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Although a number of interstitial lung diseases
(ILDs), such as hypersensitivity pneumonitis, drug-
induced parenchymal reactions, some metal-related
lung diseases and mineral pneumoconioses, are
associated with exposure to well-defined exogenous
agents, little is known about the factors that determine
the occurrence and/or severity of these diseases in
individual subjects.

For some conditions, such as the mineral pneumo-
conioses (e.g. coal worker9s pneumoconiosis (CWP),
silicosis, asbestosis) or certain drug-induced reactions

(e.g. amiodarone, bleomycin), the risk of lung disease
is related, by and large, to the amount of material that
the individual has been exposed to. However, even for
these dose-related conditions, it is often found that
people with similar degrees of exposure do not
necessarily respond in similar ways. Consequently,
the question is: what are the mechanisms that
determine why some subjects exhibit high suscepti-
bility, while others appear to be resistant to the
development of significant pulmonary disease?

For other diseases, cumulative exposure is less
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critical and host susceptibility plays a much more
prominent role. This is the case, for instance, in
hypersensitivity pneumonitis and berylliosis, where
the disease process involves immunological sensi-
tization, although even in these immunologically
mediated processes, exposure intensity plays a role
in the risk of sensitization and in the maintenance and
progression of the disease. Here, the questions are:
what are the reasons why some subjects become
sensitized and what is the link between immunological
sensitization and expression of disease?

The purpose of the present paper is to describe
the present state of knowledge, and the gaps in this
knowledge, regarding susceptibility factors that mod-
ulate the occurrence, development, severity and per-
sistence of ILDs caused by exogenous agents, both
those where the total burden is important and those
where the relationship with dose is less straight-
forward. These questions are not only important for
ILDs that are caused by known agents, they are also
relevant for ILDs caused by hitherto unknown agents.
In fact, a lot of the research conducted to unravel
the mechanisms of specific types of ILDs might be
applicable to the pathogenesis of idiopathic pulmo-
nary fibrosis (IPF) or sarcoidosis.

To approach the issue of individual susceptibility
to lung-damaging agents, four main mechanisms are
proposed, derived, in part, from a conceptual scheme
that is generally applicable to toxicology [1]. The first
mechanism concerns the issue of delivery (and per-
sistence) of the toxic agent to its targets; the second
and third mechanisms deal with biochemical and
immunological responses, respectively, which mainly
take place at the cellular level; the fourth mechanism
concerns the cascade of inflammatory and other
events, including fibrosis, at the tissue and organ
level. These successive mechanisms are not mutually
exclusive. For some agents and diseases more than
one mechanism may apply or interact, and in some
individuals, several mechanisms may coexist to
produce ILD.

Mechanisms of host susceptibility

Toxicokinetic factors

One mechanism of susceptibility may be broadly
defined as pertaining to differences in the delivery and/
or persistence of the noxious agent in the lung. Within
this category, a distinction may be made between
inhaled aerosols and organic chemicals, which reach
the lung via the airways or blood circulation.

Inhaled agents. Background. Individuals may vary
in the way particles or fibres penetrate into and are
cleared from their respiratory tracts. Such variations
may be due to innate anatomical or physiological
characteristics, or to acquired changes, such as
nasal disease or smoking-induced alterations.

Modelling studies, as well as experimental obser-
vations, have shown that the branching pattern of the
bronchial tract and the ventilation pattern determine
the overall and regional deposition of inhaled aerosols

[2–4]. Although BECKLAKE et al. [5] found that sub-
jects with asbestosis were smaller and had shorter
intrathoracic tracheal lengths and narrower transthor-
acic diameters than equally exposed controls, this line
of investigation does not appear to have been pursued
further and the practical implications of individual
variations in anatomical characteristics, in terms of
susceptibility to dust-induced lung disease, are not
known. What is better established, however, is the
general concept that exercise enhances the pollutant
dose delivered to the lung because it increases minute
ventilation and causes a switch from nasal to oronasal
breathing [6]. A well-known application of the notion
that exercise increases pollutant dose is to be found in
the field of ozone toxicity, where standard exposure
protocols include moderate exercise, and where it is
recommended that heavy exercise should be avoided
during smog alerts.

Some disease states may influence the deposition
profile of inhaled particles. Thus, it has been shown
experimentally, both in animals and humans, that the
pattern of particle deposition in the lung is altered by
the presence of chronic bronchitis or emphysema. An
almost double deposition of particles was observed in
the airways of rats with chronic bronchitis, compared
to controls [7]. In a hamster model of emphysema, the
deposition of particles in the lung was found to be
more heterogeneous than in control animals [8]. The
pulmonary deposition rate of fine particles (2 mm) was
found to bey2.5 times greater in chronic obstructive
pulmonary disease (COPD) patients, compared to
controls, and among COPD patients the deposition
rate was increased with the degree of airways
obstruction [9]. It has also been reported that the
respiratory tract deposition of ultrafine particles is
increased in COPD patients [10]. Obstructive airways
disease should, therefore, be considered as a condition
that modifies the deposition rate of inhaled particles
and predisposes to the formation of "hot spots" of
concentrated particles in the respiratory tract. In
addition, poor clearance of insoluble particles and
fibres from the alveoli and interstitium may be caused
by defective ciliary motion, inappropriate mucus
characteristics, or insufficient lymphatic drainage.
Thus, in patients with chronic bronchitis, it has been
shown that the clearance of particles in small airways
is reduced, compared to controls [11].

It is intuitively accepted that particle deposition and
clearance must be of great importance in determining
the final burden of fibrogenic materials in the lung,
but to what extent these factors effectively determine
human susceptibility to develop pneumoconiosis is
still largely unknown. However, it has been hypothe-
sized that the destruction of hilar lymph nodes by
"silicotic" fibrosis impairs lung clearance and could
thus, play an important role in the development of
progressive massive fibrosis (PMF) and, in subjects
exposed to very high concentrations of respirable
quartz, of rapidly progressive silicosis [12].

Examples in the area of interstitial lung disease.
The role of quantitative differences in the deposi-
tion and persistence of inhaled fibrogenic agents has
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been extensively studied in asbestosis. It is com-
monly accepted that asbestosis will not develop to
produce clinical manifestations below lifetime expo-
sures of 25 fibres?mL-1?yr-1 and that the relationship
between cumulative exposure and risk of asbestosis is
approximately linear [13]. However, this also implies
that not all similarly exposed subjects will develop
asbestosis. Although many factors may account for
this variability in susceptibility, individual differ-
ences in fibre retention are thought to be important.
Thus, experimental studies in the sheep model by
BÉGIN and coworkers [14, 15] have documented a
higher degree of fibre retention, as evaluated by
bronchoalveolar lavage (BAL), in those animals with
asbestosis, compared to those without disease, despite
similar exposure. Alveolar dust retention preceded the
disease. In males with established asbestosis, mineral
analyses of BAL or lung tissue have consistently
shown higher burdens of asbestos fibres or asbestos
bodies than in exposed males with no apparent
disease or disease that is limited to the airways or
pleura [15–17]. Asbestosis, or at least its radiological
manifestations, also appears to be more prevalent
among smokers than nonsmokers, which may be
partly due to a higher fibre deposition and poorer
clearance in smokers [18].

Several post mortem studies have shown that in coal
workers, 40–60 g of total dust may be found in the
lungs, with an accumulation rate of 0.4–1.7 g of dust
retained each year [19]. The retained free silica load is
usually a reflection of its content in respirable dust,
but is "concentrated" in lymph nodes, compared to
lung tissue. Although it has been suggested [20] that
there is an increased quartz retention in those with
CWP and PMF, most other studies [21] have not
reported such a simple difference and have included
coal rank as an important factor in quartz retention
[22].

Organic chemicals. Background. Chemical-induced
toxicity is generally the result of the production of
reactive intermediates by biotransformation enzymes
and the balance between such activation and other
detoxication pathways [23]. Consequently, inter-
individual differences in the expression of these
enzymes may form the basis for, or contribute to the
risk of, adverse drug reactions. This concept has been
verified mainly in the field of hepatotoxicity [24] and
rarely with regard to drug-induced pneumotoxicity.
However, susceptibility to lung cancer has been
correlated to some extent, with a high potential for
activation of polycyclic aromatic hydrocarbons cou-
pled with a low potential for enzymatic detoxication
by glutathione [25]. Similarly, an association between
susceptibility to emphysema/COPD and a polymor-
phism for microsomal epoxide hydrolase has been
described [26].

Variations in the rate and pathways of the
biotransformation of foreign compounds may be
determined by genetic polymorphism (leading to so-
called "idiosyncratic" reactions) and/or environmental
factors (interactions with pollutants, dietary factors,
other drugs, etc).

Several different xenobiotic-metabolizing cyto-
chrome P450 (CYP) and conjugation enzymes have
been shown to be present in the respiratory tract,
including the lung parenchyma [27–29]. An overview
of the expression and localization of these drug-
metabolizing enzymes in the human lung is pre-
sented in the article by HUKKANEN et al. [30] in this
Supplement. In contrast to the liver, the cellular
distribution of biotransformation enzymes in the lung is
very heterogeneous, with some cells, such as non-
ciliated bronchiolar (Clara) cells and type II pneumo-
cytes, containing a higher activity than others.
However, this does not mean that other cells, such
as pulmonary endothelial cells, alveolar macrophages
or even type I pneumocytes, do not possess any
xenobiotic-metabolizing potential [27]. Besides CYP,
other enzyme systems, such as flavine-dependent
mono-oxygenase or prostaglandin G synthase, may
also be involved in drug metabolism in the lung.

In general, the pulmonary biotransformation
enzymes do not appear to differ substantially from
those found in the liver, but the relative proportion
and cellular distribution of isozymes and the ratio
of activating to detoxifying enzymes may well be
different, thus explaining why some chemicals exert a
specific toxicity in the lung, even when they are also
metabolized in the liver. Differences in the species9
susceptibility to chemical-induced lung toxicity are
sometimes quite pronounced, pointing to the possi-
bility that individual differences in biotransformation
pathways could also influence susceptibility in humans.

There is a large body of experimental evidence
from animal studies that suggests that some lung
toxicants need metabolic activation by pulmonary
CYP enzymes to be able to cause toxicity (table 1).

Monocrotaline, a pyrrolizidine alkaloid, causes a
pulmonary vascular response leading to both acute
and more delayed types of pneumotoxicity. However,
it is not known whether the critical metabolic
activation occurs in the liver or in lungs [36], and
furthermore, there is no knowledge about the exact
nature of the activating CYP enzymes. Naphthalene
causes pneumotoxicity in mice, possibly by activation
via CYP2F1 [42], but this reaction is highly species-
specific and it is not known whether it also occurs in
humans [36]. 4-Ipomeanol is activated locally in the
lungs by CYP2B enzymes [43], but again there is a
possibility that this is a species-specific reaction.
3-Methylindole is a selective toxicant to pulmonary
Clara cells [36]. Coumarin causes a selective Clara
cell injury in mouse lung, probably via activation
by CYP2B enzymes [31]. Interestingly, Clara cell
CYP2E1 and type II cell CYP1A1 are induced by
chronic treatment of Wistar rats with quartz-containing
particles [44, 45]. It is not known whether this
induction is associated with increased inflammation
or with the fibrotic process.

Examples in the area of interstitial lung disease.
For certain potentially pneumotoxic drugs, there is
some experimental evidence of the role of phar-
macokinetic factors in their toxicity. Thus, activities
of bleomycin hydrolase, which detoxifies bleomycin,
appear to determine, at least in part, the degree of
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toxicity of this drug in mice [46]. However, it is
fair to say that the pulmonary metabolism of most
drugs that exhibit frequent or occasional pneu-
motoxicity in humans has hardly been studied [47].
Most studies of systemic lung toxicity have been
conducted in experimental animals with model
compounds.

It is accepted that xenobiotic-metabolizing enzymes
also exhibit considerable variability in the lungs, and
consequently, activation reactions, as well as detoxi-
cation reactions, would also be highly variable.
However, there is very little knowledge about genetic
or nongenetic factors in variability. In addition, the
specific pattern of enzymes expressed in the lungs
seems to show at least some species-specificity.

In conclusion, research is still required to under-
stand even the basal expression and modifying factors
of xenobiotic-metabolizing enzymes in human pulmo-
nary tissue and their possible involvement in ILD,
particularly those variants that are caused by foreign
chemicals, such as therapeutic drugs.

Biochemical defence mechanisms

A second type of susceptibility mechanism relates to
the broad area of the pulmonary cellular defence
against noxious agents.

Background. An issue that is attracting considerable
interest in many areas of biomedical research, inclu-
ding fibrogenesis [48], is the cell9s defence against
oxidative attack. Various enzymatic and non-
enzymatic defence systems exist to protect cells and
tissues from oxidants, and it is possible that genetic
and acquired variations in these systems account for
interindividual variation in the response to oxidative
stress. This is especially relevant for the lung, which
is exposed to oxygen and oxidant pollutants, inclu-
ding those present in cigarette smoke. Moreover, lung
cells are also a potential target of the endogenous
production of oxidants by inflammatory cells.

The enzymes involved in the cellular defence against
toxic oxygen species include the superoxide dismu-
tases (SODs), catalase and glutathione peroxidases,
and the glutathione system. Eukaryotes contain three
different types of SOD: a copper- and zinc-containing

form (CuZnSOD) in the cytosol; a manganese-
containing form (MnSOD) in the mitochondria; and
an extracellular form (ECSOD) in the extracellular
space. CuZnSOD is constitutively expressed, espe-
cially in bronchial epithelium, and MnSOD is induced
by oxidants and cytokines, mainly in alveolar macro-
phages and alveolar epithelium. Catalase is localized
to peroxisomes and constitutively expressed in alveo-
lar pneumocytes and blood neutrophils, and to a
lesser degree, in alveolar macrophages and bron-
chial epithelium [49–51]. ECSOD is a secretory
Cu/Zn-containing glycoprotein, synthesized in at least
alveolar macrophages and is the major SOD in the
extracellular fluids in the human lung [52]. Other
important proteins with antioxidant properties have
also been identified in the lung, the most important
of them being glutathione-S-transferases, haem-
oxygenase and the thioredoxin reductase system.
Moreover, a network of nonenzymatic antioxidants
exists in the lung. Comparison of two extracellular
fluids, i.e. plasma and the lung epithelial lining fluid
(ELF), shows a different contribution of the various
nonenzymatic antioxidants. The concentration of
glutathione is 300-times higher in human ELF than
in plasma. Glutathione is synthesized by the rate
limiting enzyme gamma-glutamyl cysteine synthetase,
but both the distribution and expression of this
enzyme in the human lung are largely unknown. A
greater understanding of the way in which the
relatively high levels of glutathione are achieved in
the ELF is needed. Thus far, the changes that occur in
the pulmonary antioxidant system upon oxidative
stress have not been adequately defined. It is clear,
however, that adequate characterization of changes in
the antioxidants in various lung compartments is
necessary for rational antioxidant supplementation.

A large amount of research, using various in vivo
and in vitro experimental systems, has been carried out
to assess the lung9s response to oxidative stress caused
by high concentrations of oxygen, ozone, inhaled or
circulating foreign compounds, including particles,
and oxidants released from inflammatory cells [53].
Interindividual susceptibility in response to ozone
has been the subject of considerable research. Highly
reproducible, significant, interindividual variations in
human pulmonary function responses to ozone sup-
port the hypothesis that genetic background is an

Table 1. – Examples of pneumotoxic chemicals (in animals) requiring metabolic activation

Chemical Species/mechanism Activating enzyme References

Coumarin Mouse/Clara cell toxicity CYP2B? [31]
Coumarin Rat/general toxicity [31]
1,1-Dichloroethylene Mouse/general? CYP2E1? [32, 33]
4-Ipomeanol Mouse/Clara CYP2B? [34]
Methylene chloride Mouse/Clara ? [35]
3-Methylindole Mouse/Clara ? [36]
Monocrotaline Various/vascular injury ? [36]
Naphthalene Mouse/Clara CYP2F1 [36–38]
1-Nitronaphthalene Rodent/general ? [39]
Paracetamol Mouse/Clara CYP2E1? [40]
Trichloroethylene Mouse/Clara ? [41]

?: uncertainty.
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important determinant in susceptibility to ozone [54].
Genetic linkage analyses in a variety of mice strains
with varying susceptibility to ozone have indicated
that the resistant phenotype was linked to chromo-
some 11 [55]. Mice, genetically deficient in Clara cell
protein (CC10 or CC16), were found to be hypersus-
ceptible to ozone exposure, indicating that this protein
has a protective role in the defence against oxidant-
mediated lung injury [56]. Some research in the field of
oxidative stress has also been devoted to acute lung
injury (hyperoxia, acute respiratory distress syndrome
(ARDS)) and chronic obstructive disease in humans
[57, 58]. The importance of proteins with antioxidant
properties in the susceptibility to environmental lung
diseases is also supported by a recent study that shows
an association between a microsatellite polymorphism
in the haem oxygenase-1 gene promoter and the
development of pulmonary emphysema [59].

In smokers, elevated levels of glutathione in the
ELF have been described, which are thought to be a
defence against oxidative damage induced by cigarette
smoke [60]. Interindividual variability of mechanisms
regulating glutathione levels in response to exogenous
toxic substances may be involved in disease manifesta-
tion. However, knowledge about these pathophysio-
logical links is, as yet, mainly speculative.

Although there is some biochemical and experi-
mental evidence linking oxidative stress and a lack of
antioxidant defence to the pathogenesis of diverse
interstitial lung diseases, the contribution of these
factors to the destruction of pulmonary architecture
in vivo is not known. Intervention studies in animal
models of lung fibrosis using antioxidants such as
N-acetylcysteine (NAC) or SOD, may give some
insight into this important area. From the studies,
NAC has been shown to reduce inflammation and
formation of fibrosis in a variety of animal models
employing hyperbaric oxygen, bleomycin, or amio-
darone [61–64]. In parallel to these observations, a
positive effect on redox balance and formation of
oxidation products has also been shown in patients
with fibrosing alveolitis using oral NAC as a gluta-
thione precursor [65, 66]. Moreover, intracellular
glutathione levels have been linked to the activation
of transcription factors, gene expression, and the
release of proinflammatory mediators, making gluta-
thione and its precursors an attractive target for
therapeutic interventions [67, 68]. However, it should
not be forgotten that the belief that low glutathione
levels are harmful, as they increase the individual9s
susceptibility to oxidative stress, is simplistic and does
not take into account possible beneficial consequences
of low glutathione levels, especially with respect to
activation of cellular defence mechanisms by redox
signalling. There is still a significant lack of knowledge
about these mechanisms, which at present precludes
specific interventions [69].

Examples in the area of interstitial lung disease.
The toxicity of particles such as quartz and fibres
such as asbestos, but also ambient air particles
(particles with a 50% cut-off aerodynamic diameter
of 10 mm (PM10) and ultrafine particles (v100 nm)),
have been associated with the production of toxic

oxygen species, either indirectly from inflammatory
cells activated by particles, or directly from the
particles or fibres themselves. Freshly fractured
silica particles have been shown to produce more
free-radicals and exert a higher cellular toxicity than
aged particles [70], and asbestos fibres and PM10

have been shown to produce oxygen-derived free
radical species, not only by iron-related, but also
by nitric oxide (NO)-mediated reactions [71]. In
addition, most particles and fibres lead to con-
siderable attraction and activation of macrophages
and polymorphonuclear leukocytes, which also pro-
duce toxic oxygen species. Both inflammatory res-
ponse and fibrosis could be reduced in animal
models using crystalline silica inhalation and con-
comitant administration of antioxidant enzymes,
such as polyethylene glycol-conjugated (PEG)-catalase
[72]. However, induction of endogenous antioxidant
enzymes is not enough to overcome the initial
inflammation and persistent fibrotic response [73].

A series of studies is available on the antioxidant
enzymes (AOEs) of coal miners, with or without
CWP [74–77]. These studies show abnormal levels of
several AOEs in macrophages, red blood cells or
serum from coal miners with CWP, with or without
PMF. The studies mainly demonstrate upregulation of
glutathione-dependent enzymes in red blood cells at
later stages of CWP. In addition, a recent study on
hypersensitivity pneumonitis (farmer9s lung) has indi-
cated upregulation of MnSOD, but not CuZnSOD,
in alveolar macrophages and granulomas, but not
in the fibrotic areas in the human lung [78]. It has
also been shown that levels of glutathione are low
in the alveolar lining fluid of patients with IPF [79],
and recent data from BEHR et al. [80] indicate that
glutathione homeostasis in the lung9s extracellular
fluid may be one of the host susceptibility factors that
governs the occurrence of acute episodes of farmer9s
lung.

Some metals, most notably cobalt, are also capable
of causing oxidative stress in the lung [81]. The
production of toxic oxygen species increases when
cobalt is associated with tungsten carbide in hard
metal [82]. However, the exact role of oxidant injury
in the pathogenesis of hard metal lung (or in other
conditions of added oxidative stress) is still largely
speculative, even if the progression of the disease
appears to be adversely influenced by the administra-
tion of oxygen [83].

Several drugs exert their toxicity via oxidative
mechanisms. These compounds elicit lung toxicity
via redox cycling, i.e. they shuttle electrons to oxygen.
Examples are bleomycin, nitrofurantoin, and para-
quat [23]. It is possible that the occurrence of drug-
induced pulmonary disease is influenced by, or due to
innate deficiencies in, the defence against oxidants. A
case report [84] showed pulmonary oedema after
administration of a normally nontoxic concentration
of oxygen in a child deficient in CuZnSOD; another
case report [85] indicated that a hemizygote deficiency
in glucose-6-phosphate dehydrogenase (which is
necessary for generating NADPH that serves as a
donor of reducing equivalents for the reduction of
glutathione) may have determined the occurrence
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of mefloquine-induced pneumonitis. Alterations in
antioxidant defences may also develop as a result
of dietary habits (vitamins and enzyme cofactors),
life-style factors (smoking) and environmental expo-
sures (which may induce the lung9s antioxidant
defence) or therapeutic drugs. Thus, the commonly
taken drug paracetamol may cause a significant
decrease in glutathione concentrations in alveolar
macrophages and type II pneumocytes in vitro, even at
concentrations that correspond to therapeutic plasma
levels [86].

Immunological sensitization

A third type of mechanism belongs to the area of
immunological sensitization and is of obvious rele-
vance to hypersensitivity pneumonitis, chronic beryl-
lium lung disease and some drug-induced allergic
reactions.

Background. The factors that determine the occur-
rence of immunological sensitization in an indivi-
dual are still poorly understood. Again, both genetic
and environmental factors must be involved in the
process of allergic sensitization. This has mainly been
studied in the field of bronchial asthma. A number of
studies have attempted to identify genes that are
linked to atopic asthma or major histocompatibility
complex (MHC) class II alleles associated with occu-
pational asthma, due to specific agents such as
toluene di-isocyanate (TDI) [87, 88] or trimellitic
anhydride (TMA) [89]. The occurrence of atopy and
asthma is also influenced by nongenetic factors,
collectively labelled "westernized lifestyle".

A particular form of immunological sensitization is
related to autoimmunity. Thus, a therapeutic drug,
such as halothane, may be hepatotoxic as a result of
the covalent binding of a trifluoroacetyl moiety,
derived from (oxidative) P450 metabolism, to micro-
somal proteins, which are then no longer recognized
as self-proteins [90]. Recent in vitro studies have
shown that the capacity to generate trifluoroacety-
lated antigens is dependent on CYP interindividual
variability [91]. Similar mechanisms are presu-
mably applicable to drug-induced lupus-reactions or
chemical-associated systemic sclerosis.

Examples in the area of interstitial lung disease.
Chronic beryllium lung disease is the pulmonary
condition in which genetic susceptibility to immuno-
logical sensitization has been best characterized [92].
RICHELDI et al. [93] found a strong association
between susceptibility to berylliosis and an HLA-
DPB1 genetic marker, the amino acid variant HLA-
DPB1Glu69. This finding has been confirmed by an
independent study by WANG et al. [94] who found
that HLA-DPB1Glu69-positive alleles were present
in 95% of a series of 20 beryllium disease patients.
The mechanistic basis of this phenomenon is
thought to be related to the presentation of beryl-
lium to T-cells, specifically by the HLA-DP Glu69
molecule [95]. In addition, a preliminary report
indicated that the tumour necrosis factor (TNF)-a

allelic variant causing a high production of TNF
(see later) was also associated with beryllium hyper-
sensitivity. Interestingly, while the TNF-a genetic
marker was associated with sensitization to beryllium,
the HLA-DP marker was associated with disease
progression, suggesting that the genetic and environ-
mental factors may have a variety of interactions
in relation to disease mechanisms. Interestingly, the
susceptibility to cobalt-related interstitial lung disease
also appears to be related to the HLA-DPB1Glu69
allele [96], although evidence of this is less solid than
in the case of beryllium.

For hypersensitivity pneumonitis (HP) also, there is
evidence that genetic factors govern the immune
response to inhaled antigen. ZABEL and SCHLAAK [97]
have studied cytokine gene polymorphisms in HP and
found that the genotype for "high responder" TNF-a2
was associated with the occurrence of farmer9s lung.
SELMAN et al. [98] reported similar findings, as well as
links with some HLA alleles. Similar cytokine gene
polymorphisms have been shown to be important in
other immunologically mediated diseases. For example,
high-producing TNF-a genotype is associated with
acute rejection of transplanted organs [99]. However,
environmental factors may also influence the immune
response in HP, with smoking being protective, and
concomitant viral or Mycoplasma pneumoniae infec-
tions being possible adjuvants [100, 101]. Smoking is
associated with a reduced prevalence of all forms of
HP and this is probably related to the complex effects
of smoking on several components of the immune
response to inhaled antigen. For example, smoking
has been shown to reduce cytokine release from
macrophages, depress levels of interleukin (IL)-6 and
suppress the antibody response to inhaled anti-
gen [102, 103]. Viruses are commonly found in the
lungs of patients with acute HP [104] and the onset of
farmer9s lung has been associated with M. pneumoniae
infection [100]. In a mouse model of HP, CORMIER

et al. [104] showed that viral infection enhanced
cytokine production and increased cellular responses
to antigen challenge. Other animal models of HP
suggest that multigenic factors are important in
determining the susceptibility of certain strains of
mice to the development of HP, and the progression
of the disease usually requires the induction of
nonspecific lung inflammation by adjuvants such as
bacille Calmette-Guérin (BCG) or carrageenan [105].
Thus, evidence from different sources suggests that
susceptibility to the development of HP is a complex
phenomenon, which probably involves both genetic
and environmental factors.

It must be recognized that even when a disease is
based on allergy or immunological sensitization, it
cannot be assumed that individual susceptibility is the
sole determinant in the genesis and maintenance of the
disease, and that the intensity of exposure does not
play a role. This has been well demonstrated in the
field of occupational asthma, where there is a strong
relationship between the attack rate of the disease and
the level of exposure (with peaks of exposure perhaps
more important than the time-integrated level). The
concept that exposure intensity is also important in
immunologically mediated ILDs is supported by
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epidemiological studies in both HP and chronic
beryllium disease. Several studies have demonstrated
a close relationship between the amount of airborne
micro-organisms in the work environment of farmers
and the risk of developing farmer9s lung [106–108].
This is also reflected in the close relationship between
the prevalence of farmer9s lung and meteorologic
conditions (mainly humidity) [109, 110]; thus, both
regional variations (dependent on altitude) and year-
to-year variations in rainfall influence the incidence of
farmer9s lung in the Doubs region [111]. This is
outlined in more detail in the Review by BOURKE et al.
[112] in this Supplement. A recent case-control study
[113] confirmed that patients with farmer9s lung came
from farms where the total amount of airborne micro-
organisms was higher, but also found that the fungal
flora in these farms differed qualitatively from that in
farms without affected subjects, by the presence of
Absydia corymbifera. The existence of a threshold
for the maintenance and progression of HP is also
suggested by the fact that wearing respiratory protec-
tion devices appears to prevent the recurrence of acute
bouts of HP [114–116], even though the intensity
of exposure may remain high even with the most
effective masks.

With regard to beryllium disease, KREISS et al. [117]
have shown that the type, or level, of beryllium
exposure is an important determinant of disease
incidence among exposed workers. Using job descrip-
tions as a marker of exposure types or levels in the
course of an individual9s occupational history, it has
been shown that exposure intensity is associated with
increased disease risk, suggesting that a dose-effect
relationship may determine disease risk in beryllium-
exposed subjects. Interestingly, though, a study of
the interaction between exposure and genetic factors
in the determination of disease-risk conducted by
RICHELDI et al. [118], has shown that genetic predis-
position plays a major role in risk determination,
having an additive/supramultiplicative effect upon
exposure intensity [118]. In this study, heavily exposed
workers carrying the HLA-DPB1Glu69 marker had a
disease risk that was 8–10-times higher than that of
the similarly exposed HLA-DPB1Glu69-negative
workers, suggesting that exposure may exert dose-
related effects that differ by one order of magnitude
between the susceptible and the nonsusceptible
individuals in an exposed population.

No autoimmune mechanisms appear to have been
identified that explain the occurrence of drug-induced
pneumotoxicity, but there is no reason why this could
not occur in the lung as in other organs, such as the
liver, since various lung cells have the capability of
activating chemicals to reactive metabolites that can
covalently bind to cellular proteins (see Toxicokinetic
factors). Moreover, cellular injury by foreign chemi-
cals may lead to immunogenic alterations in structural
or other proteins, thereby inducing autoimmune
reactions. This may help to develop an understanding
of the pathogenesis underlying silica-induced syste-
mic sclerosis. Similarly, the recurrence of giant cell
interstitial pneumonitis in a transplanted lung, despite
cessation of exposure [119], is also suggestive of an
autoimmune process.

Inflammation and fibrogenesis

A fourth type of mechanism conferring suscepti-
bility to ILD and the propensity to develop fibrosis is
that of the regulation and resolution of inflammation
and fibrogenesis.

Background. Various types of tissue reactions may
result from cellular injury or immunological sensiti-
zation. In the most favourable case, normal repair
processes lead to complete resolution or minimal
residual damage. However, if the injurious agent
remains present or recurs, or if the normal homeo-
stasis mechanisms are perturbed, a more persistent
and damaging process of inflammation and/or fibrosis
may be set in motion. The propensity of individuals
to develop particular types of inflammation, such as
granulomas and/or fibrosis, is probably under genetic
and environmental control.

The paradigm that lung fibrosis is always preceded
by, and dependent on, the severity of inflammation is
probably valid in many situations, but it has been
argued more recently, mainly on the basis of patho-
logical observations, that this is not necessarily true
for all instances of lung fibrosis. Thus, fibrogenesis
(i.e. excessive deposition of extracellular matrix and
cell proliferation) may represent a more "independent"
disease process than was previously believed.

Examples in the area of interstitial lung disease.
Inflammation and fibrogenesis have been studied, to
a large extent, in the areas of sarcoidosis and IPF, as
well as in particle- and fibre-induced lung injury,
and models of pneumoconioses. Most animal models
that have studied particle-induced lung fibrosis have
been able to block fibrosis when initial inflammation
was prevented or lowered with co-administration
of aluminium [15, 120] or polyvinylpyridine-N-oxide
(PVNO) [121]. However, instillation of N-formyl-
L-methionyl-leucyl-phenylalanine (FMLP)-activated
polymorphonuclear neutrophils after instillation of
silica, led to a reduction in lung load and fibrosis
in mice [122]. The degree to which dust particles,
such as silica or asbestos, lead to fibrosis has been
shown to be under genetic control, probably through
the response of cytokine networks and growth factors
which: 1) determine the cumulative lung load by
attenuating clearance; and 2) regulate the cascade of
events leading to fibrogenesis. Thus, experimental
animals have varying susceptibility to silica between
species (e.g. the rat is more sensitive than the mouse
or hamster) and within the same species (e.g. signi-
ficant differences of susceptibility to the develop-
ment of silicosis have been noted among different
mouse strains). Some of these differences in sus-
ceptibility could be due to variations in the responses
to oxidative stress (see previously), but some studies,
e.g. using knock-out mice, indicate that variations in
cytokines or their receptors are critical for inducing
fibroproliferative responses in the lung. This is based
on the classical mechanism that occurs when alveolar
macrophages are stimulated by particle uptake or
bacterial lipopolysaccharide (LPS) and secrete
cytokines for recruitment of more inflammatory cells

36s B. NEMERY ET AL.



as well as tissue remodelling. Within this concept, the
cytokine-phenotypes concerning TNF-a, transforming
growth factors (TGF) and IL-6 have been shown to
play an important role in the initiation and pro-
gression of mineral dust-induced disorders, such as
CWP [123, 124]. Moreover, the TNF type 2 poly-
morph (see previously) has been shown to occur more
frequently in coal miners with CWP than in controls
[125]. Animal studies have demonstrated that silica-
induced lung fibrosis in mice could be ameliorated
using a specific anti-TNF antibody [126], and that
the infusion of soluble-TNFR75 receptors that com-
plex circulating free TNF could prevent and reduce
existing fibrosis [127]. Increased levels of TNF and
TNF-receptors have also been found in BAL and
tissue specimens of subjects with various ILDs. More
specifically, in patients with CWP or PMF, changes
of TNF-release from alveolar macrophages, and
changes in IL-6, TGF-b, insulin-like growth factor-1
(IGF-1) and platelet-derived growth factor (PDGF)
were noted [123]. In addition, both TNF and IL-6
messenger ribonucleic acid (mRNA) have been
shown to be increased in lung tissue biopsies from
coal miners, especially in areas where coal dust was
present [128].

In experimental animals, like chimpanzees, induc-
tion of acute alveolar damage with LPS appeared
to be the cause of activation of coagulation and
fibrinolysis in the alveolar space, which was cytokine-
dependent [129]. As a result, the locally produced
serine protease thrombin further increases endothelial
permeability, stimulates granulocyte influx and serves
as a fibroblast mitogen. This thrombin-mediated
fibroblast activation appeared to be dependent on
IL-6 and TNF-a [129], and upregulates IL-8 intra-
cellularly [130], suggesting that this coagulation
protein has an important role in the induction of
fibrosis.

Several clinical and experimental data indicate that
T-helper 2 (Th2) polarization is not only important in
the pathogenesis of lung diseases, such as bronchial
asthma, but also in ILD. The Th2 cytokines IL-4, -5,
-10 and -13 are all expressed in the lung tissue of
patients with IPF, and the severity of the disease is
apparently related to the level of expression of these
cytokines [131, 132]. In vitro studies indicate that IL-4
stimulates the proliferation of fibroblasts and their
production of collagen. Conversely, interferon (IFN)-
c inhibits the proliferation of fibroblasts [133, 134].
Injection of specific antibodies directed against IL-4
and IL-10 confirmed the profibrotic activity of these
cytokines in a model of liver fibrosis induced by
parasite eggs [135]. Similarly, in the lung, the fibrotic
response induced by these parasites was accelerated
by the overexpression of IL-4 [136]. In experimental
models of lung fibrosis induced by ionizing radiation
or bleomycin, fibrosis was associated with an
increased production of Th2 cytokines [137, 138]. In
addition, pulmonary fibrosis induced by bleomycin is
significantly reduced by the administration of IFN-c
[139]. HUAUX et al. [140] have shown that IL-12 p40, a
Th2 cell cytokine, is persistently upregulated in
response to the administration of silica particles.
Although IL-10, another Th2 cell cytokine, limited

the amplitude of the alveolitis induced by silica, it also
exerted a profibrotic activity, which is reminiscent of
the possible discordance between inflammation and
fibrosis [141]. This observation about IL-10 might
apply more generally to a large array of cytokines that
share both anti-inflammatory and profibrotic activi-
ties (TGF-b, IL-13, etc.). There is also evidence of
multiple routes of polyclonal T-cell activation through
several peptides derived from antigens and viruses.
Progression of fibrosing alveolitis can occur under
circumstances in which mutations in the Fas-FasL
(receptor-ligand) interactions on activated cells cause
lymphoproliferative disorders with autoimmune
manifestations [142]. Fas-receptors, which are mem-
bers of the TNF-receptor-ligand family, are expressed
on bronchiolar and alveolar cells and expression of FasL
occurs on infiltrating lymphocytes and granulocytes
[143]. The Fas-FasL pathway is involved in normal
apoptosis of cell subsets, but in fibrosing alveolitis,
induced in experimental animals, the expression of the
receptors is strongly upregulated; this can be mea-
sured in cells derived from BAL fluid (BALF) and
may induce pulmonary toxicity, including deoxyribo-
nucleic acid (DNA) damage, leading to pulmonary
fibrosis [144]. Although a normal apoptosis cycle
avoids the inflammation associated with necrotic cell
death, a pathologically upregulated Fas-FasL path-
way can induce pro-inflammatory cytokines, such as
IL-8 [143], indicating that the Fas pathway can also
lead to inflammation and fibrosis with production of
pro-collagen and fibronectin at the alveolar level.
Therefore, hyperreactive Fas-FasL pathways, as well
as TNF-a, can induce exaggerated IL-8 production
and excretion by airway epithelial cells [145], with
resulting damage to the extracellular matrix and
fibrogenesis.

Differences in the susceptibility to ILD might to
some extent depend on: 1) the host9s proinflammatory
response and the persistence of inflammation; and 2)
the capacity of the host to mount a Th2 immune
response. Although well established, the field of
inflammatory cytokines has barely been used as a
tool to explain differences in susceptibility in ILD.
Within the context of the Th2 response, it is
interesting to note that there is strong evidence that
a "western lifestyle", with its relatively high standard
of hygiene, plays a crucial role in the increasing
prevalence of allergic diseases. It is possible that the
immune system in early life remains rather unstimu-
lated by intense infections that normally elicit Th1
reactions (e.g. mycobacteria, vaccinations), leading
to a biased Th2 immune polarization, and hence,
increased susceptibility to sensitization with otherwise
harmless allergens in the environment [146]. Whether
this paradigm might also hold for ILDs remains
completely unexplored.

Conclusion

Although this paper has dealt with ILDs of
"known" aetiology, relatively little is known about
the reasons why individuals exposed to these agents
develop lung disease.
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The issue of genetics pervades the entire discussion
of host susceptibility. Genes largely determine the way
the respiratory tract is made, how well lungs can be
cleared of unwanted deposited materials, which path-
ways are used to biotransform foreign chemicals, how
to defend against oxidative attack, whether indivi-
duals are prone to develop particular types of immuno-
logical response, and which cytokines and growth
factors are activated preferentially. Knowledge in this
area is likely to expand rapidly in the future when the
entire human genome will be available to be explored.
Large follow-up studies of cohorts of people whose
genetic make-up can be analysed, thanks to the
availability of suitably banked biological samples,
should be conducted to try and discover these
susceptibility genes. However, the legal and ethical
implications in this field should not be forgotten. For
instance, it would not be acceptable to institute
recruitment policies that systematically exclude car-
riers of genotypes conferring some susceptibility to
occupational agents, without ensuring that exposures
to dangerous chemicals are well controlled.

However, although a particular genotype will often
predispose individuals to disease, it is clear that genes
are not the only determinants of health and disease.
Environmental factors may be equally important in
shaping host susceptibility. For one thing, diseases do
not generally arise "out of the blue" and there must be
exogenous factors that cause or at least trigger all
diseases, including those termed "cryptogenic", "idio-
pathic" or "primary". A complete understanding of
many of these environmental and lifestyle factors,
which are amenable to modulation by interventions at
the individual and society level, is still a long way off.
Refinement of the assessment of current and past
occupational and other environmental exposures in
individuals and groups of individuals is greatly
needed. Good (bio)markers of exposures must be
developed to help disentangle the relationship between
susceptibility and exposure.

Clinical and epidemiological research, as well as
experimental research, into both the genetic bases and
the environmental determinants of interstitial lung
diseases should lead us to better mechanism-based
prevention strategies, early detection of, and therapy
for these conditions.
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