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Take Home Message 

SARS-CoV-2's interplay with the Renin-Angiotensin-Aldosterone-System likely accounts for much of its 

unique pathology. Appreciating the degree and mechanism of this interaction highlights potential 

therapeutic options, including blockade (ARBs).
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Abstract 

Importance 

Coronavirus Disease 19 (COVID-19), the disease caused by the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic with significant 

morbidity and mortality since first appearing in Wuhan, China, in late 2019. As many countries are 

grappling with the onset of their epidemics, pharmacotherapeutics remain lacking. The window of 

opportunity to mitigate downstream morbidity and mortality is narrow but remains open. The renin-

angiotensin-aldosterone system (RAAS) is crucial to the homeostasis of both the cardiovascular and 

respiratory systems. Importantly, SARS-CoV-2 utilizes and interrupts this pathway directly, which 

could be described as the renin-angiotensin-aldosterone-SARS-CoV-2-axis (RAAS-SCoV-axis). There 

exists significant controversy and confusion surrounding how anti-hypertensive agents might 

function along this pathway. This review explores the current state of knowledge regarding the 

RAAS-SCoV-axis, informed by prior studies of SARS-CoV, how this relates to our currently evolving 

pandemic, and how these insights might guide our next steps in an evidence-based manner.   

Observations 

This review discusses the role of the RAAS-SCoV-axis in acute lung injury and the effects, 

risks, and benefits of pharmacologic modification of this axis. There may be an opportunity to 

leverage the different aspects of RAAS inhibitors to mitigate indirect viral-induced lung injury. 

Concerns have been raised that such modulation might exacerbate the disease. While relevant 

preclinical, experimental models to date favor a protective effect of RAAS-SCoV-axis inhibition on 

both lung injury and survival, clinical data related to the role of RAAS modulation in the setting of 

SARS-CoV-2 remains limited. 

Conclusion 

Proposed interventions for SARS-CoV-2 predominantly focus on viral microbiology and aim 

to inhibit viral cellular injury. While these therapies are promising, immediate use may not be 



feasible, and the time window of their efficacy remains a major unanswered question. An alternative 

approach is the modulation of the specific downstream pathophysiologic effects caused by virus that 

lead to morbidity and mortality. We propose a preponderance of evidence that supports clinical 

equipoise regarding the efficacy of RAAS-based interventions, and the imminent need for a multisite 

randomized controlled clinical trial to evaluate the inhibition of the RAAS-SCoV-axis on acute lung 

injury in COVID-19.  

Introduction 

COVID-19, the infectious disease caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), has left over 180 countries and territories grappling with a devastating 

pandemic. In December 2019, Wuhan, China, was identified as the epicenter of this outbreak. At the 

time of this submission, reported COVID-19 cases exceeded 700,000, with more than 30,000 

deaths.[1-3] (At time of article submission). While early estimates vary and true values remain 

uncertain, mortality is estimated between 0.4 to 3.4%[4, 5] with initial morbidity and mortality 

disproportionally affecting older patients.[6] Infectivity (R0) is estimated at 2.24 to 3.58.[4, 7] COVID-

19-related hospitalizations are mostly due to the need for respiratory support and progressively 

higher levels of care, with respiratory failure being the underlying etiology of COVID-19-related 

deaths.[8, 9] As many countries are struggling with the onset of their epidemics, 

pharmacotherapeutics remain lacking.[10, 11] Learning from prior pandemics and related viruses 

can focus our efforts to control spread and treat those infected.[12]  

This novel coronavirus is closely related to the severe acute respiratory syndrome 

coronavirus (SARS-CoV), which caused an outbreak of disease (SARS) in 2003. Genetic studies found 

that SARS-CoV-2 shares almost 80% and 50% sequence identity with SARS-CoV and middle eastern 

respiratory virus coronavirus (MERS-CoV), respectively.[13] The genetic variations between SARS-

CoV and SARS-CoV-2 translate into differences in infectivity[14] and immune response[15].  Despite 

these differences, the shared genome translates into common clinical, microbiologic, and 

biochemical phenotypes. SARS-CoV-2 mimics SARS-CoV’s mechanism of infection which utilizes the 



angiotensin-converting enzyme 2 (ACE2), part of the renin-angiotensin-aldosterone system (RAAS). 

Following binding, ACE2 activity is downregulated through multiple mechanisms, preventing it from 

performing its usual function in states of health, further summarized below.[13, 16-18] The 

association between ACE2 and COVID-19 is rooted in two concepts: the mechanism of SARS-CoV-2 

infection and the regulatory role of ACE2 during RAAS overactivation. Following the SARS outbreak, 

extensive research advanced our knowledge of highly morbid coronavirus infections.[16-25] The 

similar renin-angiotensin-aldosterone-SARS-CoV-2-axis (RAAS-SCoV-axis) interactions shared by the 

two coronaviruses provide an opportunity to further our understanding of this unique interplay in 

our pursuit of treatment options. 

Early attempts to develop safe and effective vaccines for SARS or MERS have been 

unsuccessful. It is hypothesized that current efforts will take time to develop, and may or may not be 

efficacious for this or future coronavirus pandemics.[10, 26-28] Many potential therapies have been 

proposed with a subset currently undergoing investigation.[29, 30] Meanwhile, extensive efforts to 

date have been appropriately focused on screening, identification, and containment through the 

collaboration and coordination between global and local health and governmental agencies.[31] 

Unfortunately, these public health efforts have had, at best, mixed success curbing the spread of the 

pandemic.[32] Given the rapid spread of SARS-COV2 and the significant morbidity and mortality 

associated with infection, it behooves the medical community to evaluate and leverage novel 

treatments for efficacy, especially if they are already available and have an established safety profile.  

RAAS blockade has been proposed as a potential treatment for SARS-CoV-2.[33-36] This 

hypothesis was initially published by Sun et al.[35, 37] on February 4, 2020, and reinforced in a Drug 

Development Research publication on March 4, 2020.[33] Other reviews have voiced concern 

regarding the association between COVID-19 and cardiovascular disease,[38] going too far as to 

postulate that continued RAAS blockade may cause harm and recommend considering 

discontinuation.[39] The previous argument is based on the observation that pharmacologic 

blockers of RAAS can upregulate ACE2 expression, which might increase viral entry into the cell.[39] 



Evidence from human subjects to support such an assertation is scant, and as we will see in this 

review, preclinical and current observational Covid-19 evidence would support the contrary 

hypothesis – that discontinuation of RAAS blockade may prove harmful. These contrasting 

hypotheses underscore the dire need to evaluate potential mechanisms, if any, through which RAAS 

modulation would impact the pathophysiology of COVID-19.[35, 38, 40] In this review, we intend to 

compile the existing evidence in order to discuss how we might bridge knowledge gaps regarding the 

interplay between SARS-CoV-2, ACE2, and the RAAS.   

RAAS in States of Health 

Overview 

Renin, angiotensin, and aldosterone represent the core of a complex hormonal axis, referred 

to as RAAS, which contributes to blood pressure control, sodium reabsorption, inflammation, and 

fibrosis.[41] RAAS imbalance or modification can cause or treat many diseases including heart 

failure, hypotension, diabetes, and atherosclerosis, respectively.[42] This review focuses on several 

physiological and pathological effects of angiotensin II (Ang II) cell signaling. (Figure 1)  

Angiotensin II / AT1 receptor relationship 

Angiotensin II (Ang II), the primary physiological product of the RAAS system, is a potent 

vasoconstrictor. As illustrated in Figure 1, ACE catalyzes the transformation of angiotensin I (Ang I) to 

Ang II. Ang II elicits its effects by activating two receptors: type 1 angiotensin II (AT1) receptor and 

type 2 angiotensin II (AT2) receptor.[43] Ang II action through AT1 receptor causes a cascade with 

resultant inflammation, vasoconstriction, and atherogenesis.[44] These effects also promote insulin 

resistance and thrombosis.[45] In contrast, AT2 receptor stimulation causes vasodilation, decreased 

platelet aggregation, and the promotion of insulin action. However, the expression of AT2 receptor is 

low in healthy adults.[45]  As such, Ang II’s effects in adults are modulated and balanced indirectly 

by angiotensin II converting enzyme (ACE2), which converts Ang II into lung-protective Angiotensin-

(1-7) (Ang-[1-7]),  similar to effects seen from AT2 receptor stimulation.[41, 46] Conceptually 



grouping pathways into an Ang II/AT1 receptor and its opposing pathway ACE2/Ang-(1-7) helps with 

understanding the countering forces and the sequelae when an imbalance occurs. (Figure 1)  

The consequences of excessive Ang II include pulmonary vasoconstriction, inflammatory, 

and cytokine-induced organ damage[47] secondary to increased membrane permeability,[48] and 

increased epithelial cell apoptosis.[49] The effects are predominantly mediated through the 

unopposed AT1 receptor activation secondary to decreased ACE2 levels.[50] Furthermore, the pro-

inflammatory cascade[51] and increased vascular permeability[48] caused by over-activation of the 

AT1 receptor in the lungs directly induce acute lung injury (ALI), acute respiratory distress syndrome 

(ARDS), and lead to death.[10, 33]  

Angiotensin-Converting Enzyme 2 

ACE2 is expressed in many tissue types, including respiratory epithelial cells.[52] ACE2 is 

predominantly expressed on the apical surface and converts Ang II into lung-protective Ang-(1-7) 

and Ang-(1-9) by catalyzing a pathway that prevents unopposed AT1 receptor activation. Therefore, 

ACE2 functions as a counterbalance to its structurally similar counterpart ACE[53] through the 

conversion of Ang II into Ang-(1-7), which in contrast to ACE, promotes vasodilation, reduces 

proliferation, and prevents apoptosis.[53] ACE2 levels are known to be low in healthy individuals[54] 

and ACE2 levels decrease with age.[55] Chronically elevated levels of ACE2 are an independent 

predictor of disease progression; but evidence suggests these changes are compensatory rather than 

causal.[54]  

ACEis and ARBs 

Both angiotensin-converting enzyme inhibitors (ACEis) and angiotensin receptor blockers 

(ARBs) increase tissue and plasma levels of renin and Ang I.(50) ACEis inhibit Ang I to Ang II 

conversion, decreasing serum Ang II levels to baseline and have little to no affinity for ACE2.[56] At 

clinical doses, ACEis only partially affect this conversion because 40% of Ang II formation occurs 

outside the ACE pathway.[57] ACE levels are in turn decreased through a negative feedback in states 



of high Ang II levels.[58] Ang II levels increase in response to ARBs at all levels, except in the kidney. 

The consequence of this increase is a redirection of Ang II activity through the anti-inflammatory and 

vasodilatory ACE2 and AT2 receptor pathways.[56] As a result, ACE2, compared to ACE, regulates 

local levels of both Ang II and Ang-(1-7) to a greater degree.[42] Tikellis et al. suggest that ARBs, 

therefore, have a higher potential to favorably rebalance the RAAS pathway compared to ACEi.[42] 

Furthermore, the kallikrein-kinin system is regulated by ACE and ACE2. Increased activity of the 

kallikrein-kinin system occurs under proinflammatory conditions,[59] specifically bradykinin and des-

Arg-BK9, which can lead to vascular leakage when unchecked by ACE and ACE2, respectively. This 

mechanism has been posited to be, at least in part, a cause of cough[60] and pulmonary edema,[61] 

independent of proposed Ang II induced hydrostatic pressure. The dysregulated kallikrein-kinin 

system’s role remains theoretical in COVID-19; however, if true, AT1 receptor blockade may be 

favored (over ACE inhibition) in an attempt to preserve the regulatory mechanisms of this 

system.[61] While there may still be a key role for ACE inhibition in the context of the current 

disease that we will elucidate in the following sections, these observations support our decision to 

narrow the focus of this review to the downstream RAAS modifiers, ARBs.  

RAAS in Cardiovascular Disease 

Modulation of the RAAS axis is central to the management of cardiovascular disease.[62] 

Cardiovascular disease, heart failure, atrial fibrillation, and kidney disease are associated with 

elevated levels of ACE2.[60] It is critical to discern if these elevations are a culprit or sequelae of 

 ACE2 levels are high in diseased states, likely secondary to an insufficient compensatory 

response to overactive RAAS activity 

 

 In COVID-19, high rates of pulmonary edema and cough may be due, in part, to reduced 

breakdown of bradykinin from decreased ACE activity 

 

 ARBs may provide crucial regulation to the overactive RAAS-SCoV-axis 

Key Points 1 



disease in order to separate association from causation.[63] More recent opinions suggest ACE2 

represents as a biomarker, rather than a culprit, of cardiovascular disease.[64] 

Ramchand et al. demonstrated elevated ACE2 levels to be an independent risk factor of 

major adverse cardiac events in patients with known coronary artery disease, though this data, as 

noted by the authors, does not differentiate association versus causation.[54] To begin to dissect 

this interplay, we turn to preclinical models, specifically ACE2 knockout mice that are characterized 

by severe cardiac defects. Critically, these defects are notably absent in double ACE and ACE2 

knockout models which highlights the highly balanced interplay between ACE/Ang II/AT1 and 

ACE2/Ang-(1-7).[53, 65] Similar protective effects to prevent cardiovascular events and strokes have 

been demonstrated in mouse models with overexpressed ACE2.[66] Rachmand et al. concluded that 

patients with elevated ACE2 might “reflect a persistent albeit insufficient counter-regulatory process 

to shift the balance away from the deleterious effects of sustained Ang II activation.”[54]  As such, 

ACE2 overexpression may be a compensatory mechanism to mitigate the effect of unopposed Ang II 

stimulation though increased degradation into protective Ang-(1-7).[67]  

It is important to note that preclinical animal model treatment with losartan upregulates 

cardiac ACE2 mRNA expression and increases in ACE2 activity. [68, 69] However, human studies 

found no significant difference in ACE2 plasma levels in patients treated with ACEi or ARBs have not 

confirmed such an effect, though local tissue ACE2 levels were not measured.[54]. Through 

anecdotal reports, COVID-19 may be associated with high rates of myocarditis and heart failure in 

the critically ill. While beyond the scope of this proposal, we will note that increased Ang II and 

decreased ACE2 are also associated with impaired cardiac contractility, which can be rescued with 

losartan.[70] More observational data is needed to assess if other signs of RAAS overdrive 

(hypokalemia, hypertension) portend poor outcomes and may be associated with arrhythmias that 

have been noted in the diseases.[71] Nevertheless, this could potentially underscore potential 

benefits of RAAS modulation that extend beyond the attenuation of lung injury. 



 

RAAS in Pulmonary Disease 

Chronic Lung Disease 

In chronic obstructive lung disease (COPD), patients treated with ARBs (compared to those 

on ACEi) had less severe exacerbations, fewer exacerbations overall, lower mortality, lower 

mechanical ventilation requirements, and fewer hospitalizations.[72] Moreover, veterans over 65 

years old that were on ARBs before and during their hospitalization for pneumonia had decreased 

mortality when compared to patients without such treatment.[73] 

Acute Lung Injury  

Unopposed RAAS activation via the Ang II/AT1 receptor causes inflammation[51] increased 

vascular permeability[48] and severe lung injury,[10, 33] while ARBs significantly attenuate these 

changes.[48-51] Importantly, the mere presence of high concentrations of Ang II can further regulate 

the expression of ACE2, leading to dysregulated Ang II/AT1 receptor activity.[74] In mice, losartan 

reduced mortality by blunting Ang II-associated increases in soluble epoxide hydrolase, a promoter 

of lung injury.[75] Animal models of ventilator-associated lung injury have demonstrated benefit 

from losartan, mitigating Ang II activity and AT1 receptor expression.[76-78] While most studies 

include pre-treated animal models, rescue models also demonstrate efficacy, with the restoration of 

ACE2 levels, blunting of PaO2 decline, and attenuation of lung injury.[50]  

In human patients, genetic cohort studies yield further insights into the relationship 

between RAAS and acute lung injury. Jerng et al. found that polymorphisms in the ACE gene are 

 ACEis and ARBs interrupt maladaptive pathophysiologic responses to heightened 

activation of the RAAS. 

 

 ARBs and ACEis mitigate the deleterious effects of unopposed AT1 receptor pathway 

activation, which in turn decreases inflammation, insulin resistance, and lung injury  

Key Points 2 



associated with outcomes in ARDS. These findings were corroborated by Adamzik et al., who 

identified patients with the ACE DD genotype (associated with increased ACE activity) to have the 

highest risk of ARDS-related death (HR 5.7).[79] Other human studies evaluating the association 

between RAAS-inhibition and ARDS remain observational. Kim et al. found ARDS patients that were 

taking ACEi or ARBs had better survival rates when compared to those without RAAS inhibition.[80]  

A secondary analysis of a 2010 randomized control trial in patients with acute respiratory failure 

suggested that treatment with ACEi/ARB at discharge following an episode of acute respiratory 

failure was associated with a 44% reduction in 1-year mortality.[81] More recently, Hsieh et al. 

observed lower adjusted odds of hospital mortality in patients with sepsis (with and without shock) 

who were on ARB or ACEi therapy.[82] Mortenson et al. also found a 58% decrease in the odds of 

hospital mortality in patients taking ARBs before admission.[83] Based on the above, there have 

been calls to further elucidate the potential benefits of ACEi and ARB in ARDS.[84] However, 

randomized control trials around this topic were not identified in the peer-reviewed literature or 

clinicaltrials.gov at the time of this manuscript’s preparation.  

Pneumonia 

While influenza and other types of pneumonia may interact with the RAAS axis, both animal 

and human studies illustrate clear indirect effects on the RAAS in the setting of certain influenza 

strains in particular. Previous studies suggest Ang II levels predict mortality in undifferentiated 

patients with influenza,[85] and continuation of RAAS inhibitor therapy during admission is 

associated with decreased hospital mortality and odds of intubation in viral cases of pneumonia.[86] 

RAAS may have implications for other viral pneumonias, as well, as Gu et al. found that children with 

respiratory syncytial virus tend to have higher Ang II levels compared to healthy children.[87] Based 

on this observation, they demonstrated the benefit of recombinant ACE2 therapy on RSV infection in 

a preclinical mouse model.  



Critically, both H7N9 and H5N1 influenza have been shown to cause lung injury through 

ACE2 downregulation, upregulation of Ang II, and AT1 receptor-induced lung injury.[88, 89] Mouse 

models of H5N1 and H7N9 demonstrated decreased IL-6, lung edema, lung injury, and mortality if 

treated with losartan.[89, 90] The mechanism by which losartan prevents lung injury may not reside 

solely within the RAAS pathway, however.[51] Liu et al. suggest that losartan inhibits the activation 

of pulmonary dendritic cells.[91] In a study of rats with pseudomonas pneumonia, AT1 receptor 

blockers suppressed the activation of neutrophils through a mechanism that does not involve the 

AT1 receptor down-regulation.[51, 92] Such studies have raised concern that losartan treatment 

might decrease microbial clearance. In sharp contrast, study results actually demonstrate reduced 

viral loads[90] and increased bacterial clearance[51] in lung injury models treated with losartan. 

Given the complexity of these interactions, future investigations remain necessary to further 

elucidate these relationships. 

ACE2 binding viral infection SARS-CoV 

In 2003, ACE2 was identified as the binding protein for SARS-CoV. In the years to follow, 

studies demonstrating the downstream consequences of downregulation of ACE2 with resultant 

increases in Ang II concentration illustrate the vicious cycle caused by the disruption of the RAAS, we 

refer to in this manuscript as RAAS-SARS-CoV-2 (RAAS-SCoV-axis).[18] Of relevance to the current 

pandemic, Wrapp et al. found SARS-CoV-2 to have a 10- to 20-fold higher affinity for ACE2 than 

SARS-CoV. The authors postulate this may cause increased infectivity, which may help explain the 

differences in the evolution of the two epidemics.  

Both SARS-coronaviruses contain four structural proteins, the nucleocapsid, membrane, 

envelope, and spike protein.[93] The nucleocapsid, membrane, and envelope proteins have roles in 

viral replication, structural integrity, and host response among other mechanisms.[93] The spike 

protein, known as the S-protein, is integral to attaching and infecting host cells.[14, 93]  Phan et al. 

identified specific deletions that increase the potential of the SARS-CoV-2 spike to evade immune 

responses over time. These changes have implications for both initial and subsequent infection 



severity, immunity, and the likelihood of developing an efficacious vaccine. More relevant to the 

current review, however, is the potential effect of such changes might have on the  RAAS-SCoV-axis, 

which could serve to explain not only their predilection for causing respiratory failure but possibly 

other commonalities between these infections. 

SARS-CoV infection downregulates the surface expression of the binding protein, ACE2, a 

pivotal component for host cell entry.[17] Notably, low ACE2 expression is associated with increased 

phenotype severity in in-vitro human airway epithelial cell studies.[24] Imai et al. validated these 

findings in a whole animal model by demonstrating that loss of ACE2 in knockout (KO) mice leads to 

impairments in oxygenation, increased inflammation, and worsening of edema compared to WT 

mice after acid-induced lung injury.[23] Pre-treatment with AT1 receptor inhibitors before acid 

induced ARDS showed significantly lower lung injury, confirming the AT1 receptor’s role in the 

physiologic response.[23] Subsequently and most critically, Kuba et al. demonstrated SARS-CoV spike 

protein augments Ang II increase and ACE2 downregulation, with resultant lung injury.[17] In this 

model, losartan can attenuate the severity of acute lung injury due to SARS-CoV infection in both a 

pre-treatment model and a more clinically relevant post-infection (rescue) model.[17]  

Ensuing studies have confirmed and built upon these findings.[19] AT1 receptor blockade 

upregulates ACE2 through a negative feedback mechanism, and serve as a lung-protective 

mechanism through the increased conversion of Ang II to Ang-(1-7), effectively blunting pulmonary 

injury from the virus.[50]  These findings have led investigators to posit that the ACE2/Ang-(1-7) 

pathway may serve as a therapeutic target to combat the pathological effects of Ang II.[74] To that 

end, there is already at least one trial of recombinant human ACE2 therapy for the treatment of 

COVID-19 that attempts to leverage this relationship and mitigate downstream lung injury.[23, 35] 

The mechanism by which SARS-CoV downregulates ACE2 may be relevant to the 

development of novel therapeutics, as well. Haga et al. demonstrated that SARS-CoV binding to 

ACE2 induces ACE2 shedding as a soluble form into the serum,[20] and further studies validated 



those findings.[19] In addition, endocytosis of the ACE2 protein occurs after binding to SARS-CoV, 

further decreasing ACE2 activity,[94] with potential implications for Ang II/Ang1-7 balance described 

throughout this review. A final critical mechanism that cannot be overlooked includes the role of AT1 

receptor in the downregulation of ACE2. Desholtz et al. found that ACE2 downregulation induced 

persistent elevation of Ang II through local interaction with the AT1 receptor, which triggers a vicious 

cycle where Ang II downregulates ACE2 leading to further increases in local tissue levels of Ang 

II.[74] These mechanisms promote an unopposed Ang II/AT1 receptor axis. (Figure 1) 

The ACE2-SARS/COVID-19 interplay has led to controversy with clinical implications. The 

finding that ACE2 KO mice are protected against SARS-CoV infection[17] raises a concern that an 

upregulated ACE2 is harmful in the setting of SARS-CoV and COVID infections, as the virus cannot 

enter the cell. Conversely, ACE2 downregulation following infection is concerning considering the 

preclinical data summarized to this point, which instead suggests a putative causative mechanism of 

Ang II/Ang (1-7) in the evolution of SARS-CoV-2 associated acute lung injury. Even if abolishing ACE2 

were feasible, Han et al. detected alternative receptors, DC/L-SIGN, which mediated SARS-CoV entry 

indep

ende

ntly 

of 

ACE2.

[21] 

Controversies regarding the causative role of ACE2 in COVID-19 

Limited mechanistic investigations regarding COVID-19 currently exist.[95] Early Chinese 

data illustrate a progressive increase in Ang-II levels among patients hospitalized in the setting of 

confirmed COVID-19,[96] along with concomitant increasing levels of IL-6 levels, with the highest 

levels in non-survivors.[97] Similarly, a 2014 analysis of H7N9 patients showed progressively 

 SARS-CoV decreases surface expression of ACE2 during infection 

 

 Decreased ACE2 activity leads to increased Ang II and further downregulation of 

ACE2 in a vicious cycle, driving acute lung injury. 

 

 While the main point of entry involves ACE2, other receptors can independently 

mediate SARS-CoV infection 

Key Points 3 



increasing levels of Ang-II, up to 4 weeks following infection, a finding associated with a worse 

prognosis.[89] In a recent COVID-19 patient study, quantified levels of Ang-II were positively 

correlated with viral titers and closely associated with PaO2/FiO2 measures, suggesting a 

relationship between infection, RAAS, and lung injury. Accordingly, the study investigators 

postulated that angiotensin receptor blockade might represent a promising therapeutic target.[96]  

As noted previously, ACE2 levels are known to be low in healthy individuals,[54] decrease 

with age, and are lower in men than in women.[55, 98] Age is an independent risk factor for 

mortality in patients admitted with COVID-19.[97] The data also suggests a disproportionate rate of 

disease occurrence, severity, and worse outcomes in males compared to females during this 

pandemic.[99] These associations might be interpreted to indicate that low ACE2 during times of 

health are appropriate, but the ability to regulate overactive RAAS or RAAS-SCoV-axis during illness 

is, at least in part, dependent on ACE2. For instance, one study identified a higher expression of the 

lung-protective AT2 receptor among women, which could explain the disproportionately lower 

mortality in female COVID-19 subjects.[100] Interestingly, ACE2 is located on the X-chromosome, 

which has been hypothesized to affect the ability of men to maintain adequate ACE2 production in 

situations of severe illness (i.e., ARDS or COVID-19)[40]  

Perhaps most importantly, the most common comorbidities of severely ill patients included 

hypertension, diabetes mellitus, and coronary heart diseases.[9] These comorbidities are associated 

with either an overactivation of Ang II/AT1 or a deficiency of ACE2,[42, 45] and all have shown 

benefit from RAAS blockade in chronic conditions,[101] including an attenuation in AT1 receptor 

expression with losartan.[102] Furthermore, smoking tends to increase AT1 receptor expression[102] 

along with ACE2 expression in human and mouse epithelial cells.[103, 104] RAAS activation in states 

of stress with high circulating Ang II levels may be particularly harmful for such patients, and could 

explain at least some of the observed clinical outcomes. Namely, data from China found the odds of 

disease progression in those with COVID-19 are 14 times higher in smokers.[8] However, we 



acknowledge that misinterpreting association for causation can be dangerous and that the 

pathology underlying acute and chronic conditions may not be equivalent.[105] Nevertheless, RAAS 

manipulation remains an attractive therapeutic target not to treat or prevent infection with COVID-

19, but rather mitigate its downstream consequences.     

Side effects of RAAS manipulation are understandably a cause for concern, specifically 

hypotension and acute kidney injury in the setting of acute illness. The most severe risks of ARBs 

include teratogenicity in the setting of pregnancy, hypersensitivity including angioedema, 

symptomatic hypotension, worsening of renal function, and electrolyte abnormalities; however, the 

most common side effects of include fatigue, weakness, diarrhea, chest pain and anemia. Clinical 

trial and post-marketing surveillance data of losartan demonstrate an excellent safety profile. In over 

4,000 patients, there was a low incidence of adverse events (2.1%) comparable to placebo 

(3.7%).[106] The effects more common in losartan than placebo were clinically minor, including 

dizziness (3% vs 2%), upper respiratory infection (8% vs 7%), nasal congestion (2% vs 1%) and back 

pain (2% vs 1%). While losartan has the potential to cause symptomatic hypotension, four studies 

have identified losartan has a negligible effect on resting blood pressure and heart rate in healthy 

volunteers.[107-110] These reassuring data cannot be extrapolated to COVID-19 patients; however, 

when assessing the risk/benefit balance for RAAS modulation, the baseline risk appears low in the 

healthy population whereas repurposing of other medications may not have the same favorable 

profile. There are also concerns that the upregulation of ACE2 by ARBs could accelerate SARS-CoV-2 

entry in host cells. Such concerns become more relevant when one considers the observation that 

patients with hypertension tend to have worse outcomes, and many patients with hypertension are 

on agents that might upregulate ACE2 expression. Consequently, some clinicians have argued for 

discontinuing ACEi and ARBs and switching their patients to different anti-hypertensive classes. 

However, to our knowledge, there is no data to suggest such a change is beneficial, nor are there 

well controlled, risk adjusted analyses demonstrating that these medications are harmful. 



On the contrary, data summarized in this review actually suggests that discontinuation of 

ACEi or ARBs could pose a serious risk of harm through the propagation of excessive Ang II mediated 

acute lung injury and downregulation of protective ACE2. To this point, in a recent preprint, Liu et al 

retrospectively studied 511 COVID-19 patients (age > 65 years old) with hypertension. Patients were 

categorized based on home anti-hypertensive regimen. Patients on ARBs had significantly decreased 

odds of developing severe COVID-19 disease on univariate analysis (OR 0.34, p = 0.025) and 

multivariable analysis (OR 0.25, p = 0.046), while none of the other medications demonstrated 

improved outcomes. Two subsequent retrospective studies have demonstrated a protective effect of 

RAS blockade, including significant reductions in viral load.[111, 112] Finally, in addition to the 

inhibitory effects on AT1R, a pre-print publication from Iran[113] identified losartan as a potential 

candidate treatment based on molecular docking and dynamic simulation. In addition to the effects 

on angiotensin homeostasis, therefore, losartan may directly inhibit the viral macrodomain and cell 

cycle.[113] Even prior to these observational data, based on pre-clinical evidence and non-COVID-19 

studies, the International Society of Hypertension, the European Society of Cardiology, and other 

international committees have strongly recommended that physicians and patients continue 

treatment with their usual anti-hypertensive therapy as there is no clinical or scientific evidence to 

suggest that treatment with ACEi or ARBs should be discontinued in the setting of the SARS-CoV-2 

pandemic at the current time.[114-116] 

Conclusion 

Current clinical evidence is insufficient to recommend treating with or withholding RAAS 

blockade during this pandemic. Despite elevated ACE2 levels being found in chronic disease states, 

the upregulation of ACE2 seems more likely an adaptive response rather than a culprit.[67] 

Significant preclinical data and retrospective human data suggest RAAS inhibition decreases lung 

injury and improves survival, while simultaneously decreasing viral load in animal models with viral 

infections that utilize the ACE2 receptor. Human clinical data regarding the effects of RAAS inhibitors 

on outcomes remain modest and an area of active investigation. While the association between 



hypertension and poor outcomes might be mediated through ACE2 upregulation and increasing viral 

susceptibility, these differential outcomes are at least as likely to be a result of dysregulated Ang II-

mediated lung injury. We believe this represents a state of clinical equipoise and hypothesize that 

RAAS inhibition may improve outcomes in patients infected with COVID-19. Furthermore, the wide 

spectrum of severity during the pandemic highlights the heterogeneity in the patients with COVID-

19. As different phenotypes emerge, certain subgroups (i.e. those with overactive RAAS) may differ 

in their response to therapy. Time will also need to be considered. RAAS modulation may have 

significantly different effects early in the disease process compared to later given the complexity of 

the RAAS-SCoV-axis. This underscores the exigency for high-quality evidence to investigate any 

significant association between RAAS modulation and pulmonary pathophysiology, with a focus on 

ACE2-mediated viral infections, particularly, SARS-CoV-2. 
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Figure Legend 

Figure 1: Renin-angiotensin system with COVID-19 

Table 1 Summary (in text) 

Figure 1: Renin-angiotensin system with COVID-19 
ACEi angiotensin converting enzyme inhibitor, ACE1 angiotensin converting enzyme, ACE2 angiotensin converting enzyme 2, ARB 
angiotensin receptor blocker, AT1R type 1 angiotensin II receptor, AT2R type 2 angiotensin II receptor, rhACE2 recombinant 
human angiotensin converting enzyme 2.   
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